[1] Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature, 2004, 432(7): 84–87.[2] Saito Y, Takao H. High performance lead-free piezoelectric ceramics in the (K,Na)NbO3LiTaO3 solid solution system. Ferroelectrics, 2006, 338(1):17–32.[3] Chang Y F, Yang Z P, Hou Y T, et al. Effects of Li content on the phase structure and electrical properties of lead-free (K0.46-x/2Na0.54-x/2Lix)(Nb0.76Ta0.20Sb0.04)O3 ceramics. Appl. Phys. Lett., 2007, 90(23): 232905–1–3.[4] Yoo J H, Yoo K H, Lee Y W, et al. Electrical characteristics of the contour-vibration-mode piezoelectric transformer with ring/dot electrode area ratio. J. Appl. Phys. 2000, 39(5): 2680–2684.[5] Wu J G, Xiao D Q, Wang Y Y, et al. Effects of Ag content on the phase structure and piezoelectric properties of (K0.44-xNa0.52Li0.04Agx)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics. Appl. Phys. Lett., 2007, 91(13): 132914–1–3.[6] Li J F, Wang K, Zhang B P, et al. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc., 2006, 89(2): 706–709.[7] Hollenstein E, Davis M, Damjanovic D, et al. Piezoelectric properties of Li and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett., 2005, 87(18): 182905–1–3.[8] Yang Z P, Chang Y F, Wei L L. Phase transitional behavior and electrical properties of lead-free (K0.44Na0.52Li0.04) (Nb0.96-xTaxSb0.04)O3 piezoelectric ceramics. Appl. Phys. Lett., 2007, 90(4): 042911–1–3.[9] Wu J G, Wang Y Y, Xiao D Q, et al. Effects of Ag content on the phase structure and piezoelectric properties of (K0.44-xNa0.52Li0.04Agx)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics. Appl. Phys. Lett., 2007, 91(13): 132914–1–3.[10] Ming B Q, Wang J F, Qi P, et al. Piezoelectric properties of (Li, Sb, Ta) modified (Na, K)NbO3 lead-free ceramics. J. Appl. Phys., 2007, 101(5): 054103–1–4.[11] Zuo R Z, Fu J, Lv D Y. Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48-xLix)(Nb1-x-ySbyTax)O3 system. J. Am. Ceram. Soc., 2009, 92(1): 283–285.[12] Xiao D Q, Wu J G, Wu L, et al. Investigation on the composition design and properties study of perovskite lead-free piezoelectric ceramics. J. Mater. Sci., 2009, 44(19): 5408–5419.[13] Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics. Appl. Phys. Lett., 2007, 90(26): 262903–262906.[14] Wu J G, Xiao D Q, Wang Y Y, et al. Improved temperature stability of CaTiO3-Modified [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05Ta0.04)O3 lead-free piezoelectric ceramics. J. Appl. Phys., 2008, 104(2): 024102–1–5.[15] Zhang J L, Zong X J, Wu L, et al. Polymorphic phase transition and excellent piezoelectric performance of (K0.55Na0.45)0.965Li0.035Nb0.80Ta0.20O3 lead-free ceramics. Appl. Phys. Lett., 2009, 95(2): 022909–1–3.[16] Akdogan E K, Kerman K, Abazari M, et al. Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04) (Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett., 2008, 92(11): 112908–1–3.[17] Wang R P, Bando H, Katsumata T, et al. Tuning the orthorhombic- rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate. Phys. Status Solidi RRL, 2009, 3(5): 142–144.[18] Zuo R Z, Fu J, Lv D Y, et al. Antimony tuned rhombohedral- orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J. Am. Ceram. Soc., 2010, 93(9): 2783–2787.[19] Zuo R Z, Fu J. Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics. J. Am. Ceram. Soc., 2011, 94(5): 1467–1470.[20] Liu L J, Huang Y M, Su C X, et al. Synthesis and structural characterization of Ce-doped bismuth titanate. Mater. Appl. Phys. A-Mater. 2011, 104 (3): 1047–1050.[21] Du H L, Zhou W C, Luo F, et al. Perovskite lithium and bismuth modified potassium-sodium niobium lead-free cermics for high temperature applications. Appl. Phys. Lett., 2007, 91(18): 182909–1–3.[22] Chen W P, Shen Z J, Guo S S. A strong correlation of crystal structure and curie point of barium titanate ceramics with Ba/Ti ratio of precursor composition. Physica-B Condensed Matter, 2008, 403(4): 660–663.[23] Randall C A, Kim N, Kucera J P, et al. Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramic. J. Am. Ceram.Soc., 1998, 81(3): 677–688. |