[1] Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chemistry Letters, 2001, 30(7): 642–643.[2] West W, Soler J, Smart M, et al. Electrochemical behavior of layered solid solution Li2MnO3-LiMO2(M= Ni, Mn, Co) Li-ion cathodes with and without alumina coatings. Journal of the Electrochemical Society, 2011, 158(8): A883–A889.[3] Robertson A D, Bruce P G. Mechanism of electrochemical activity in Li2MnO3. Chemistry of Materials, 2003, 15(10): 1984–1992.[4] Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M= Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem., 2007, 17(30): 3112–3125.[5] Mizushima K, Jones P, Wiseman P, et al. LixCoO2 (0[6] Ozawa K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics, 1994, 69 (3/4): 212–221.[7] Aurbach D, Markovsky B, Rodkin A, et al. On the capacity fading of LiCoO2 intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives. Electrochimica Acta, 2002, 47(27): 4291–4306.[8] Ohzuku T, Ueda A, Nagayama M, et al. Comparative study of LiCoO2, LiNiCoO2 and LiNiO2 for 4 volt secondary lithium cells. Electrochimica Acta, 1993, 38(9): 1159–1167. [9] Hernan L, Macias M, Morales J, et al. Proton exchange of layered LiCrO2. Materials Research Bulletin, 1989, 24(7): 781–787.[10] Feng G, Li L, Liu J, et al. Enhanced electrochemical lithium storage activity of LiCrO2 by size effect. J. Mater. Chem., 2009, 19(19): 2993–2998.[11] Komaba S, Takei C, Nakayama T, et al. Electrochemical intercalation activity of layered NaCrO2 vs LiCrO2. Electrochemistry Communications, 2010, 12(3): 355–358.[12] Singh G, Thomas R, Kumar A, et al. Electrochemical behavior of Cr-doped composite Li2MnO3-LiMn0.5Ni0.5O2 cathode materials. Journal of the Electrochemical Society, 2012, 159(4): A410–A412.[13] Ammundsen B, Paulsen J, Davidson I, et al. Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material. Journal of the Electrochemical Society, 2002, 149(4): A431–A436.[14] Galakhov V, Kurmaev E, Uhlenbrock S, et al. Electronic structure of LiNiO2, LiFeO2 and LiCrO2: X-ray photoelectron and X-ray emission study. Solid State Communications, 1995, 95(6): 347–351.[15] Barboux P, Tarascon J, Shokoohi F. The use of acetates as precursors for the low-temperature synthesis of LiMn2O4 and LiCoO2 intercalation compounds. Journal of Solid State Chemistry, 1991, 94(1): 185–196.[16] Kosova N, Devyatkina E, Kaichev V. Optimization of Ni2+/Ni3+ ratio in layered Li(Ni, Mn, Co)O2 cathodes for better electrochemistry. Journal of Power Sources, 2007, 174(2): 965–969.[17] Ammundsen B, Paulsen J. Novel lithium–ion cathode materials based on layered manganese oxides. Advanced Materials, 2001, 13(12/13): 943–956.[18] Kageyama M, Li D C, Kobayakawa K, et al. Structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2-xFx prepared by solid state reaction. Journal of Power Sources, 2006, 157(1): 494–500.[19] Hyodo T, Hayashi M, Mitsutake S, et al. Oxygen reduction activities of praseodymium manganites in alkaline solution. Journal of the Ceramic Society of Japan, 1997, 105(5): 412–417.[20] Park C W, Kim J. Structural and electrochemical properties of Li[Cr0.29Li0.24Mn0.47]O2 nanocomposite electrode for lithium-ion batteries. Chemistry Letters, 2006, 35(8): 886–887.[21] Nesbitt H, Banerjee D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. American Mineralogist, 1998, 83(3/4): 305–315.[22] Park C, Kim S, Mangani I R, et al. Synthesis and materials characterization of Li2MnO3-LiCrO2 system nanocomposite electrode materials. Materials Research Bulletin, 2007, 42(7): 1374–1383.[23] ZHANG Qian, HE Shi-Ci, LIU Wei-Wei, et al. Preparation, structural and electrochemical properties of Li1.2Mn0.4+xNixCr0.4-2xO2 by spray-dry process. Chinese Journal of Inorganic Chemistry, 2012, 28(12): 2501–2507.[24] Ahn D, Koo Y M, Kim M G, et al. Polyaniline nanocoating on the surface of layered Li[Li0.2Co0.1Mn0.7]O2 nanodisks and enhanced cyclability as a cathode electrode for rechargeable lithium-ion battery. The Journal of Physical Chemistry C, 2010, 114(8): 3675–3680.[25] Hong J, Seo D H, Kim S W, et al. Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery. J. Mater. Chem., 2010, 20(45): 10179–10186.[26] Zhang L, Takada K, Ohta N, et al. Layered (1?x?y)LiNi1/2Mn1/2O2?xLi[Li1/3Mn2/3]O2?yLiCoO2 (0≤x=y≤0.3 and x+y=0.5) cathode materials. Journal of the Electrochemical Society, 2005, 152(1): A171–A178. [27] Ogata A, Komaba S, Baddour-Hadjean R, et al. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery. Electrochimica Acta, 2008, 53(7): 3084–3093.[28] Rossouw M, Thackeray M. Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications. Materials Research Bulletin, 1991, 26(6): 463–473. |