无机材料学报 ›› 2013, Vol. 28 ›› Issue (3): 261-266.DOI: 10.3724/SP.J.1077.2013.12233

• 研究论文 • 上一篇    下一篇

高能球磨合成纳米碳包覆α-Al2O3复合粉体

吴小贤1, 李红霞1,2, 刘国齐2, 牛冲冲2, 王 刚2, 孙加林1   

  1. (1. 北京科技大学 材料科学与工程学院, 北京100083; 2. 中钢集团洛阳耐火材料研究院有限公司 先进耐火材料国家重点实验室, 洛阳471039)
  • 收稿日期:2012-04-13 修回日期:2012-05-14 出版日期:2013-03-20 网络出版日期:2013-02-20
  • 作者简介:吴小贤(1984–), 男, 博士研究生. E-mail: xiaoxian8411@163.com
  • 基金资助:

    国家自然科学基金(50972133); 国家科技支撑计划(2011BAE12B02)

Nanocarbon-coated α-Al2O3 Composite Powders Synthesized by High-energy Ball Milling

WU Xiao-Xian1, LI Hong-Xia1,2, LIU Guo-Qi2, NIU Chong-Chong2, WANG Gang2, SUN Jia-Lin1   

  1. (1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039, China)
  • Received:2012-04-13 Revised:2012-05-14 Published:2013-03-20 Online:2013-02-20
  • About author:WU Xiao-Xian. E-mail: xiaoxian8411@163.com
  • Supported by:

    National Natural Science Foundation of China (50972133); National Key Technology R&D Program (2011BAE12B02)

摘要: 以膨胀石墨和α-Al2O3微粉为原料, 采用高能球磨制备了纳米碳包覆的α-Al2O3复合粉体, 研究了高能球磨时间和球磨速率对复合粉体物相及形貌的影响。采用X射线衍射仪、场发射扫描电子显微镜和透射电子显微镜对复合粉体的物相、形貌和微观结构进行了表征。结果表明: 按膨胀石墨与α-Al2O3质量百分比为1:2, 球磨速率为600 r/min, 球磨5 h可得到被粒度为20~50 nm碳颗粒包覆的α-Al2O3复合粉体; 随着球磨时间延长, 石墨(002)晶面特征峰逐渐消失, 膨胀石墨中纳米片层会随球磨时间延长不断剥离脱落, 并逐渐龟裂成纳米碳颗粒; 相同球磨时间下, 提高球磨速率可以促进纳米碳颗粒形成, 但超过一定速率后纳米碳颗粒粒度不再减少; 480 r/min速率球磨  5 h未形成纳米碳颗粒包覆复合粉体, 600和700 r/min速率球磨5 h后复合粉体形貌基本一致。

关键词: 高能球磨, 膨胀石墨, 纳米碳包覆, α-Al2O3

Abstract: Nanocarbon-coated α-Al2O3 composite powders were synthesized by high-energy ball milling using expanded graphite and α-Al2O3 as raw materials. The effects of milling time and speed on phase composition and microstructure of the composite powders were investigated. X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) were employed to characterize the phase composition, morphology and microstructure of the composite powders. The results show that nanocarbon with a size of 20–50 nm coated on the α-Al2O3 particles when the expanded graphite and α-Al2O3 with a weight ratio of 1:2 were milled for 5 h at a speed of 600 r/min. By increasing the milling time, the (002) diffraction peak of graphite gradually disappeared, and nano-graphite sheets desquamated from expanded graphite and then chaped to nanocarbon particles. Milling for the same time, higher milling speed was beneficial to synthesize nanocarbon particles, but when milling speed reached certain value, the size of nanocarbon cannot become smaller again. Nanocarbon-coated α-Al2O3 composite powders cannot be synthesized using a milling speed of 480 r/min even milled for 5 h. The morphology and microstructure of the composite powders were basically the same when the composite powders were milled at 600 and 700 r/min for 5 h.

Key words: high-energy ball milling, expanded graphite, nanocarbon-coated, α-Al2O3

中图分类号: