[1] Smith W E. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem. Soc. Rev., 2008, 37(5): 955-964.[2] Qin L. Designing, fabricating, and imaging Raman hot spots. Proc. Natl. Acad. Sci., 2006, 103(36): 13300-13303.[3] Hildebrandt P, Stockburger M. Surface-enhanced resonance raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem., 1984, 88: 5935-5944.[4] Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B, 2002, 106(37): 9463-9483.[5] Musumeci A, Gosztola D, Schiller T, et al. SERS of semiconducting nanoparticles (TiO2 hybrid composites). J. Am. Chem. Soc., 2009, 131(17): 6040-6041.[6] Yang L B, Jiang X, Ruan W D, et al. Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites. J. Phys. Chem. C, 2009, 113(36): 16226-16231.[7] He H, Cai W P, Lin Y X, et al. Surface decoration of ZnO arrays by electrophoresis in the Au colloidal solution prepared by laser ablation in water. Langmuir, 2010, 26(11): 8925-8932.[8] Prokes S M, Glembocki O J, Rendell R W, et al. Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy. Appl. Phys. Lett., 2007, 90(9): 093105–1–3.[9] Wu W, Hu M, Ou F S, et al. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology, 2010, 21(25): 255502.[10] He H, Cai W P, Lin Y X, et al. Silver porous nanotube built three-dimensional films with structural tunability based on the nanofiber template-plasma etching strategy. Langmuir, 2011, 27(5): 1551-1555.[11] Zhang W, Zhang D, Fan T X, et al. Morphosynthesis of hierarchical ZnO replica using butterfly wing scales as templates. Micropor. Mesopor. Mat., 2006, 92(1/2/3): 227-233.[12] Zhang W, Zhang D, Fan T X, et al. Novel photoanode structure templated from butterfly wing scales. Chem. Mater., 2009, 21(1): 33-40.[13] Chen Y, Gu J J, Zhu S M, et al. Iridescent large-area ZrO photonic crystals using butterfly as templates. Appl. Phys. Lett., 2009, 94(5): 053901.[14] Tan Y W, Gu J J, Zang X L, et al. Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures. Angew. Chem. Int. Edit., 2011, 50(36): 8307-8311.[15] Zhang H, Wang G, Chen D, et al. Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag. Chem. Mater., 2008. 20(20): 6543-6549.[16] Yang L, Jiang X, Ruan W D, et al. Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution. J. Phys. Chem. C, 2008, 112(50): 20095-20098.[17] Rajh T, Chen L X, Lucas K, et al. Surface restructuring of nanoparticles: an efficient route for ligand-metal oxide crosstalk. J. Phys. Chem. B, 2002, 106(41): 10543-10552.[18] Schwartzberg A M, Grant C D, Wolcott A, et al. Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. J. Phys. Chem. B, 2004, 108(50): 19191-19197.[19] Michaels A M, Nirmal M, Brus L E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc., 1999, 121(43): 9932-9939.[20] Vukusic P, Sambles J R, Lawrence J R. Structurally assisted blackness in butterfly scales. Proc. R. Soc. B, 2004, 271(Suppl4): S237-S239.[21] Kolmakov A, Klenov D O, Linach Y, et al. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett., 2005, 5(4): 667-673. |