[1] Ohzuku T, Takehara Z, Yoshizawa S. Nonaqueous lithium/titanium dioxide cell. Electrochim. Acta, 1979, 24(2): 219-222.[2] Wang Y F, Wu M Y, Zhang W F. Preparation and electrochemical characterization of TiO2 nanowires as an electrode material for lithium-ion batteries. Electrochim. Acta, 2008, 53(27): 7863-7868.[3] Xu J W, Jia C H, Cao B, et al. Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochim. Acta, 2007, 52(28): 8044-8047.[4] Chen J S, Lou X W. Anatase TiO2 nanosheet: an ideal host structure for fast and efficient lithium insertion/extraction. Electrochem. Commun., 2009, 11(12): 2332-2335.[5] Jung H G, Oh S W, Ce J, et al. Mesoporous TiO2 nano networks: anode for high power lithium battery applications. Electrochem. Commun., 2009, 11(4): 756-759.[6] Jung H G, Yoon C S, Prakash J, et al. Mesoporous anatase TiO2 with high surface area and controllable pore size by F-ion doping: applications for high-power Li-ion battery anode. J. Phys. Chem. C, 2009, 113(50): 21258-21263.[7] Fu L J, Liu H, Zhang H P. Novel TiO2/C nanocomposites for anode materials of lithium ion batteries. J. Power Sources, 2006, 159(1): 219-222.[8] Nam S H, Shim H S, Kim Y S, et al. Ag or Au nanoparticle- embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl. Mater. Interfaces, 2010, 2(7): 2046-2052.[9] Lai C, Li G R, Dou Y Y, et al. Mesoporous polyaniline or polypyrrole/ anatase TiO2 nanocomposite as anode materials for lithium-ion batteries. Electrochim. Acta, 2010, 55(15): 4567-4572.[10] Moriguchi I, Hidaka R, Yamada H, et al. A mesoporous nanocomposite of TiO2 and carbon nanotubes as a high-rate Li-intercalation electrode material. Adv. Mater., 2006, 18(1): 69-73.[11] Hu Y S, Guo Y G, Dominko R. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv. Mater., 2006, 19(15): 1963-1966.[12] Guo Y G, Hu Y S, Sigle W, et al. Superior electrode performance of nanostructured TiO2 (anatase) through efficient hierarchical mixed conducting mesoporous networks. Adv. Mater., 2007, 19(16): 2087-2091.[13] Cao F F, Wu X L, Xin S, et al. Facile synthesis of mesoporous TiO2-C nanosphere as an improved anode material for superior high rate 1.5 V rechargeable Li ion batteries containing LiFePO4-C cathode. J. Phys. Chem. C, 2010, 114(22): 10308-10313.[14] Jin S L, Deng H G, Long D H, et al. Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes. J. Power Sources, 2011, 196(8): 3887-3893.[15] Das S K, Darmakolla S, Bhattacharyya A J. High lithium storage in micrometre sized mesoporous spherical self-assembly of anatase titania nanospheres and carbon. J. Mater. Chem., 2010, 20(8): 1600-1606.[16] Das S K, Patel M, Bhattacharyya A J. Effect of Nanostructuring and Ex situ amorphous carbon coverage on the lithium storage and insertion kinetics in anatase titania. ACS Appl. Mater. Interfaces, 2010, 2(7): 2091-2099.[17] Das S K, Bhattacharyya A J. Influence of mesoporosity and carbon electronic wiring on electrochemical performance of anatase titania. J. Electrochem. Soc., 2011, 158(6): A705-A710.[18] Zhong L S, Hu J S, Wan L J. Facile synthesis of nanoporous anatase spheres and their environmental applications. Chem. Commun., 2008, 10: 1184-1186.[19] Jiang X C, Herricks T, Xia Y N. Monodispersed spherical colloids of titania: synthesis, characterization and crystallization. Adv. Mater., 2003, 15(14): 1205-1209.[20] Sun X M, Liu J F, Li Y D. Oxides@C core-shell nanostructures: One-pot synthesis, rational conversion, and Li storage property. Chem. Mater., 2006, 18(15): 3486-3494.[21] Wagemaker M, Borghols W J H, Mulder F M. Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc., 2007, 129(14): 4323-4327.[22] Lafont U, Carta D, Mountjoy G, et al. In situ structural changes upon electrochemical lithium insertion in nanosized anatalse TiO2. J. Phys. Chem. C., 2010, 114(2): 1372-1378. |