[1] |
Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials, 1999, 20(1): 1-25.
|
[2] |
Covacci V, Bruzzese N, Maccauro G, et al. In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic. Biomaterials, 1999, 20(4): 371-376.
|
[3] |
Chevalier J. What future for zirconia as a biomaterial? Biomaterials, 2006, 27(4): 535-543.
|
[4] |
Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials, 2003, 24(13): 2161-2175.
|
[5] |
Liu X Y, Huang A P, Ding C X, et al. Bioactivity and cytocompatibility of zirconia (ZrO2) films fabricated by cathodic arc deposition. Biomaterials, 2006, 27(21): 3904-3911.
|
[6] |
Li W F, Liu X Y, Huang A P, et al. Structure and properties of zirconia (ZrO2) films fabricated by plasma-assisted cathodic arc deposition. Journal of Physics D: Applied Physics, 2007, 40(8): 2293-2299.
|
[7] |
Bauer S, Park J, Faltenbacher J, et al. Size selective behavior of mesenchymal stem cells on ZrO2 and TiO2 nanotube arrays. Integrative Biology, 2009, 1(8/9): 525-532.
|
[8] |
Guo L M, Zhao J L, Wang X X, et al. Structure and bioactivity of zirconia nanotube arrays fabricated by anodization. International Journal of Applied Ceramic Technology, 2009, 6(5): 636-641.
|
[9] |
Macak J M, Hildebrand H, Marten-Jahns U, et al. Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. Journal of Electroanalytical Chemistry, 2008, 621(2): 254-266.
|
[10] |
Lockman Z, Sreekantan S, Ismail S, et al. Influence of anodisation voltage on the dimension of titania nanotubes,Journal of Alloys and Compounds, 2010, 503(2): 359-364.
|
[11] |
Wei W, Macak J M, Schmuki P. High aspect ratio ordered nanoporous Ta2O5 films by anodization of Ta. Electrochemistry Communications, 2008, 10(3): 428-432.
|
[12] |
Shin Y, Lee S. A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays. Nanotechnology, 2009, 20(10): 105301-105305.
|
[13] |
Lee W J, Smyrl W H. Oxide nanotube arrays fabricated by anodizing processes for advanced material application. Current Applied Physics, 2008, 8(6): 818-821.
|
[14] |
Tsuchiya H, Macak J M, Ghicov A, et al. Self-organized porous TiO2 and ZrO2 produced by anodization. Corrosion Science, 2005, 47(12): 3324-3335.
|
[15] |
Berger S, Faltenbacher J, Bauer S, et al. Enhanced self-ordering of anodic ZrO2 nanotubes in inorganic and organic electrolytes using two-step anodization. Physical Status Solidi (RRL), 2008, 2(3): 102-104.
|
[16] |
Berger S, Jakubka F, Schmuki P. Formation of hexagonally ordered nanoporous anodic zirconia. Electrochemistry Communications, 2008, 10(12): 1916-1919.
|
[17] |
Zhao J L, Wang X X, Xu R Q, et al. Fabrication of high aspect ratio zirconia nanotube arrays by anodization of zirconium foils. Materials Letters, 2008, 62(49): 4428-4430.
|
[18] |
Tsuchiya H, Macak J M, Taveira L, et al. Fabrication and characterization of smooth high aspect ratio zirconia nanotubes. Chemical Physics Letters, 2005, 410(4/5/6): 188-191.
|
[19] |
Khalil N, Leach J S L. Anodic oxidation of zirconium: effect of fluoride contamination on oxide structure and transport processes. Journal of Applied Electrochemistry, 1996, 26(2): 231-233.
|
[20] |
Lockman Z, Ismail S, Kawamura G, et al. Formation of zirconia and titania nanotubes in fluorine containing glycerol electrochemical bath. Defect and Diffusion Forum, 2011, 312-315(76): 76-81.
|
[21] |
Ismail S, Ahmad Z A, Berenov A, et al. Effect of applied voltage and fluoride ion content on the formation of zirconia nanotube arrays by anodic oxidation of zirconium. Corrosion Science, 2011, 53(4): 1156-1164.
|
[22] |
Wang D A, Liu Y, Yu B, et al. TiO2 nanotubes with tunable morphology, diameter, and length: synthesis and photo-electrical/ catalytic performance. Chemistry of Materials, 2009, 21(7): 1198-1206.
|
[23] |
Zhu K, Vinzant T B, Neale N R, et al. Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Letters, 2007, 7(12): 3739-3746.
|
[24] |
Zhang L, Shao J M, Han Y. Enhanced bioactivity of self-organized ZrO2 nanotube layer by annealing and UV irradiation. Materials science and engineering C, 2011, 31(5): 1104-1110.
|
[25] |
Zhao J L, Xu R Q, Wang X X, et al. In situ synthesis of zirconia nanotube crystallines by direct anodization. Corrosion Science, 2008, 50(6): 1593-1597.
|
[26] |
Habazaki H, Uozumi M, Konno H, et al. Crystallization of anodic titania on titanium and its alloys. Corrosion Science, 2003, 45(9): 2063-2073.
|
[27] |
Fang D, Huang K L, Luo Z P, et al. Freestanding ZrO2 nanotube membranes made by anodic oxidation and effect of heat treatment on their morphology and crystalline structure. Journal of Materials Chemistry, 2011, 21(13): 4989-4994.
|
[28] |
Livage J, Doi K, Mazieres C. Nature and thermal evolution of amorphous hydrated zirconium oxide. Journal of the American Chemical Society, 1968, 51(6): 349-353.
|
[29] |
Qiu X F, Howe J Y, Meyer H M, et al. Thermal stability of HfO2 nanotube arrays. Applied Surface Science, 2011, 257(9): 4075-4081.
|
[30] |
Muratore F, Hashimoto T, Skeldon P, et al. Effect of ageing in the electrolyte and water on porous anodic films on zirconium. Corrosion Science, 2011, 53(6): 2299-2305.
|