[1] |
O’Regan B, Gräetzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(24): 737-739.
|
[2] |
ZHANG Ji-Yuan, TIAN Han-Min, TIAN Zhi-Peng, et al. Study on sol-hydrothermal synthesis of TiO2 nanoparticles and their photoelectric properties sensitized by dye. Journal of Inorganic Materials, 2009, 24(6): 1110-1114.
|
[3] |
LAN Zhang, WU Ji-Huai, LIN Jian-Ming, et al. Synthesis of rutile TiO2 nanorod andapplication in dye-sensitized solar cell. Journal of Inorganic Materials, 2011, 26(2): 119-122.
|
[4] |
Ramasamy E, Lee W J, Lee D Y, et al. Spray coated multi-wall carbon nanotube counter electrode for tri-iodide reduction in dye-sensitized solar cells. Electrochem. Commun., 2008, 10(7): 1087-1089.
|
[5] |
Murakami T N, Gräetzel M. Counter electrodes for DSC: application of functional materials as catalysts. Inorg. Chim. Acta, 2008, 361(3): 572-580.
|
[6] |
Murakami T N, Ito S, Wang Q, et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc., 2006, 153(12): A2255-A2261.
|
[7] |
Koo B K, Lee D Y, Kim H J, et al. Seasoning effect of dye-sensitized solar cells with different counter electrodes. J. Electroceram., 2006, 17(1): 79-82.
|
[8] |
Kay A, Gräetzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. C, 1996, 44(1): 99-117.
|
[9] |
Imoto K, Takahashi K, Yamaguchi T, et al. High-performance carbon counter electrode for dye-sensitized solar cells. Sol. Energy Mater. Sol. C, 2003, 79(4): 459-469.
|
[10] |
Hino T, Ogawa Y, Kuramoto N. Preparation of functionalized and non-functionalized fullerene thin films on ITO glasses and the application to a counter electrode in a dye-sensitized solar cell. Carbon, 2006, 44(5): 880-887.
|
[11] |
Hwang S, Moon J, Lee S, et al. Carbon nanotubes as counter electrode for dye-sensitised solar cells. Electron. Lett., 2007, 43(25): 1455-1456.
|
[12] |
Choi H, Kim H, Hwang S, et al. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode. Sol. Energy Mater. Sol. C, 2011, 95(1): 323-325.
|
[13] |
Ramasamy E, Lee W J, Lee D Y, et al. Nanocarbon counter electrode for dye sensitized solar cells. Appl. Phys. Lett., 2007, 90(17): 173103-1.
|
[14] |
Huang Z, Liu X, Li K, et al. Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochem. Commun., 2007, 9(4): 596-598.
|
[15] |
Fan S Q, Fang B, Kim J H, et al. Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells. Langmuir, 2010, 26(16): 13644-13649.
|
[16] |
XU Shun-Jian, QIAO Guan-Jun, WANG Hong-Jie, et al. Preparation of mesoporous carbon by phenol resin polymerization-dependent phase separation and pyrolysis. Journal of Inorganic Materials, 2008, 23(5): 971-974.
|
[17] |
Xu S J, Li J, Qiao G J, et al. Pore structure control of mesoporous carbon monoliths derived from mixtures of phenolic resin and ethylene glycol. Carbon, 2009, 47(8): 2103-2111.
|
[18] |
张 苑, 蔡 宁, 赵 颖, 等. Triton X-100对染料敏化太阳电池性能影响的研究. 影像科学与光化学, 2008, 26(2): 125-130.
|
[19] |
范乐庆, 吴季怀, 黄昀昉, 等. 染料敏化太阳电池中电子传输性能. 太阳能学报, 2005, 26(1): 34-38.
|
[20] |
方霞琴, 戴松元, 王孔嘉, 等. 小面积染料敏化纳米薄膜太阳电池的优化研究. 太阳能学报, 2006, 27(10): 973-978.
|
[21] |
胡林华, 戴松元, 王孔嘉(HU Lin-Hua, et al). 纳米TiO2多孔膜的微结构对染料敏化纳米薄膜太阳电池性能的影响. 物理学报(Acta Phys-Chim Sinica), 2005, 54(4): 1914-1918.
|
[22] |
史成武, 葛 茜, 李 兵, 等(SHI Cheng-Wu, et al). 添加剂对染料敏化太阳电池电解质性能的影响. 物理化学学报(Acta Physchin Sinica), 2008, 24(12): 2327-2330.
|
[23] |
Gräetzl M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photoch. Photobio. A, 2004, 164(1/2/3): 3-14.
|