[1] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(7): 37-40.
|
[2] |
Wilson J M, Idriss H. Structure sensitivity and photocatalytic reactions of semiconductors. Effect of the last layer atomic arrangement. J. Am. Chem. Soc., 2002, 124(38): 11284-11285.
|
[3] |
Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett., 2006, 6(1): 24-28.
|
[4] |
Mor G K, Shankar K, Paulose M, et al. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett., 2005, 5(1): 191-195.
|
[5] |
Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev., 1995, 95(3): 735-758.
|
[6] |
Chen X B, Samuel S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev., 2007, 107(7): 2891-2959.
|
[7] |
Li T L, Lee Y L, Teng H. CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells. J. Mater. Chem., 2011, 21(13): 5089-5098.
|
[8] |
O’Regan B, Grätzel M. Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(24): 737-740.
|
[9] |
Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(15): 338-344.
|
[10] |
Grätzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Photochem. Photobiol. A: Chemistry, 2004, 164(1): 3-14.
|
[11] |
TANG Yi-Wen, CHEN Zhi-Gang, ZHANG Li-Sha, et al. Preparation and characterization of nanocrystalline Cu2O/TiO2 heterojunction film electrode. Journal of Inorganic Materials, 2006, 21(2): 453-458.
|
[12] |
Hao Y Z, Pei J, Wei Y, et al. Efficient semiconductor-sensitized solar cells based on poly(3-hexylthiophene)@CdSe@ZnO core- shell nanorod arrays. J. Phys. Chem. C, 2010, 114(18): 8622-8625.
|
[13] |
Wang H, Bai Y S, Zhang H, et al. CdS quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes. J. Phys. Chem. C, 2010, 114(39): 16451-16455.
|
[14] |
Larramona G, Choné C, Jacob G, et al. Nanostructured photovoltaic cell of the type titanium dioxide, cadmium sulfide thin coating, and copper thiocyanate showing high quantum efficiency. Chem. Mater., 2006, 18(6): 1688-1696.
|
[15] |
Ning Z, Tian H N, Yuan C, et al. Solar cells sensitized with type-II ZnSe-CdS core/shell colloidal quantum dots. Chem. Commun., 2011, 47(5): 1536-1538.
|
[16] |
Sayama K, Sugihara H, Arakawa H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem. Mater., 1998, 10(12): 3825-3832.
|
[17] |
Kamat P V. Quantum dot solar cells. semiconductor nanocrystals as light harvesters. J. Phys. Chem. C, 2008, 112(48): 18737-18753.
|
[18] |
Farrow B, Kamat P V. CdSe quantum dot sensitized solar cells. shuttling electrons through stacked carbon nanocups. J. Am. Chem. Soc., 2009, 131(31): 11124-11131.
|
[19] |
Robel I, Subramanian V, Kuno M, et al. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem.Soc., 2006, 128(7): 2385-2393.
|
[20] |
Tiwari A N, Pandya D K, Chopra K L. Fabrication and analysis of all-sprayed CuInS2/ZnO solar cells. Solar Cells, 1987, 22(4): 263-273.
|
[21] |
Park G C, Chung H D, Kim C D, et al. Photovoltaic characteristics of CuInS2/CdS solar cell by electron beam evaporation. Sol. Energy Mater. Sol. Cells, 1997, 49(5): 365-373.
|
[22] |
Nanu M, Schoonman J, Goossens A. Inorganic nanocomposites of n- and p-type semiconductors: a new type of three-dimensional solar cell. Adv. Mater., 2004, 16(5): 453-456
|
[23] |
Goossens A, Hofhuis J. Spray-deposited CuInS2 solar cells. Nanotechnology, 2008, 19(42): 424018-424025.
|
[24] |
Li T L, Teng H S. Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes. J. Mater. Chem., 2010, 20(18): 3656-3664.
|
[25] |
Li T L, Lee Y L, Teng H S. CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells. J. Mater. Chem., 2011, 21(13): 5089-5098.
|
[26] |
Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc., 2009, 131(11): 3985-3990.
|
[27] |
Feng X J, Shankar K, Oomman K. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett., 2008, 8(11): 3781-3786.
|
[28] |
GE Zeng-Xian, WEI Ai-Xiang, LIU Jun, et al. Synthesis and photovoltaic devices performance of single crystalline TiO2 nanowire bundle arrays. Journal of Inorganic Materials, 2010, 25(10): 1105-1109.
|