[1] |
Paulose M, Mor G K, Varghese O K, et al. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J. Photochem. Photobiol. A: Chem., 2006, 178(1): 8-15.
|
[2] |
Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells, 2006, 90(14): 2011-2075.
|
[3] |
ZHANG Zhi-Yu, SANG Li-Xia, LU Li-Ping, et al. Preparation of TiO2 nanotube arrays and their photoelectrochemical properties. Journal of Inorganic Materials, 2010, 25(11): 1145-1149.
|
[4] |
嵇天浩, 周 吉. 一维TiO2纳米材料的研究进展. 精细化工, 2010, 27(7): 629-634.
|
[5] |
Zhou W J, Liu H, Wang J Y, et al. Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl. Mater. Interfaces, 2010, 2(8): 2385-2392.
|
[6] |
嵇天浩. 锐钛矿型TiO2纳米线/带的大量制备. CN: 101898790A, 2010.12.1.
|
[7] |
Adán C, Bahamonde A, Fernández-García M, et al. Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation. Appl. Catal. B: Environ., 2007, 72(1/2): 11-17.
|
[8] |
Albonetti S, Baldi G, Barzanti A, et al. Chlorinated organics total oxidation over V2O5/TiO2 catalysts prepared by polyol-mediated synthesis. Appl. Catal. A: General, 2007, 325(2): 309-315.
|
[9] |
Ashour A. The physical characteristics of Cu2S/CdS thin-film solar cell. J. Optoelectron. Adv. Mater., 2006, 8(4): 1447-1451.
|
[10] |
Mane R S, Lokhande C D. Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys., 2000, 65(1): 1-31.
|
[11] |
Yamamoto T, Tanaka K, Kubota E, et al. Deposition of copper sulfide on the surface of poly(ethylene terephthalate) and poly(vinyl alcohol) films in aqueous solution to give electrically conductive films. Chem. Mater., 1993, 5(9): 1352-1357.
|
[12] |
Pfisterer F. The wet-topotaxial process of junction formation and surface treatments of Cu2S-CdS thin-film solar cells. Thin Solid Films, 2003, 431-432(1): 470-476.
|
[13] |
Wu Y, Wadia C, Ma W L, et al. Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett., 2008, 8(8): 2551-2555.
|
[14] |
Reijnen L, Meester B, Goossens A, et al. Nanoporous TiO2/Cu1.8S heterojunctions for solar energy conversion. Mater. Sci. Eng. C, 2002, 19(1/2): 311-314.
|
[15] |
Reijnen L, Feddes B, Vredenberg A M, et al. Rutherford backscattering spectroscopy study of TiO2/Cu1.8S nanocomposites obtained by atomic layer deposition. J. Phys. Chem. B, 2004, 108(26): 9133-9137.
|
[16] |
Cao H L, Qian X F, Wang C, et al. High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. J. Am. Chem. Soc., 2005, 127(46): 16024-16025.
|
[17] |
Xu H L, Wang W Z, Zhu W, et al. Synthesis of octahedral CuS nanocages via a solid-liquid reaction. Nanotechnology, 2006, 17(15): 3649-3654.
|
[18] |
Yang Z H, Zhang D P, Zhang W X, et al. Controlled synthesis of cuprous oxide nanospheres and copper sulfide hollow nanospheres. J. Phys. Chem. Solids, 2009, 70(5): 840-846.
|
[19] |
Zhang H Y, Ji T H, Li L L, et al. Preparation and characterization of room temperature ferromagnetic Ni-doped anatase TiO2 nanobelts. Acta Phys.-Chim. Sin., 2008, 24(4): 607-611.
|
[20] |
Ohsaka T, Izumi F, Fujiki Y. Raman spectrum of anatase TiO2. J. Raman Spectrosc., 1978, 7(6): 321-324.
|
[21] |
Smith J M, Wren J C, Odziemkowski M, et al. The electrochemical response of preoxidized copper in aqueous sulfide solutions. J. Electrochem. Soc., 2007, 154(8): C431-C438.
|
[22] |
Bobrenko Y N, Pavelets S Y, Pavelets A M, et al. Efficient photoelectric converters of ultraviolet radiation based on ZnS and CdS with low-resistivity surface layers. Semiconductor, 2010, 44(8): 1080-1083.
|