[1] Forgacs E, Cserha’ti T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environment International, 2004, 30(7): 953-971.[2] Silva C G, Wang W D, Faria J L. Photocatalytic and photochemical degradation of mono-, di- and tri-azo dyes in aqueous solution under UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181(2/3): 314-324.[3] Zhang G, Zou X, Gong J, et al. Characterization and photocatalytic activity of Cu-doped K2Nb4O11. Journal of Molecular Catalysis A: Chemical, 2006, 255(1/2): 109-116.[4] Almquist C B, Biswas P J. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. Catalysis, 2002, 212(2): 145-156.[5] Ullah R, Dutta J. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous Materials, 2008, 156(1/3): 194-200.[6] Gelover S, Mondragón P, Jiménez A. Titanium dioxide Sol-Gel deposited over glass and its application as a photocatalyst for water decontamination. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 165(1/3): 241-246.[7] Shi Y H, Feng S H, Cao C S. Hydrothermal synthesis and characterization of Bi2MoO6 and Bi2WO6. Material Letters, 2000, 44(3/4): 215-218. [8] Kudo A, Hijii S. H2 or O2 Evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chemistry Letters, 1999, 28(10): 1103-1104.[9] Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catalysis Letters, 2004, 92(1/2): 53-56.[10] Ma D K, Huang S M, Chen W X. Self-assembled three-dimensional hierarchical umbilicate Bi2WO6 microspheres from nanoplates: controlled synthesis, photocatalytic activities, and wettability. J. Phys. Chem., 2009, 113(11): 4369-4374.[11] Zhang C, Zhu Y F. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chemistry of Materials, 2005, 17(13): 3537-3545.[12] Fu H B, Zhu Y F. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem., 2005, 109(47): 22432-22439.[13] Xu H, Li H M, Wu C D, et al. Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4. Journal of Hazardous Materials, 2008, 153(1/2): 877-884.[14] Yu J G, Yu H G, Cheng B, et al. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin -lms prepared by liquid phase deposition. J. Phys. Chem., 2003, 107(50): 13871-13879.[15] Wu T X, Liu G M, Zhao J C, et al. Photoassisted degradation of dye pollutants. V. self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem., 1998, 102(30): 5845-5851.[16] Qu P, Zhao J C, Shen T, et al. TiO2-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RhB in an aqueous TiO2 colloidal solution. Journal of Molecular Catalysis A: Chemical, 1998, 129(1): 257-268. |