[1] Padhi A K, Najundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 1997, 144(4): 1188-1194.[2] Morgan D, Van der Ven A, Ceder G. Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett., 2004, 7(2): A30-A32.[3] Islam M, Driscoll D, Fisher C, et al. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater., 2005, 17(20): 5085-5092.[4] Delmas C, Maccario M, Croguennec L, et al. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature Mater., 2008, 7(8): 665-671.[5] Laffont L, Delacourt C, Gibot P, et al. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater., 2006, 18(23): 5520-5529.[6] Sides C R, Croce F, Young Y Y, et al. A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochem. Solid-State Lett., 2005, 8(9): A484-A487.[7] Li X L, Kang F Y, Bai X D, et al. A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochem. Commun., 2007, 9(4): 663-666.[8] Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature, 2009, 458: 190-193.[9] Delacourt C, Poizot P, Levasseur S, et al. Size effects on carbon-free LiFePO4 powders. Electrochem. Solid-State Lett., 2006, 9(7): A352-A355.[10] 高 剑, 应皆荣, 姜长印, 等(GAO Jian, et al). 球形纳米晶LiFePO4和Li4Ti5O12的制备及电池研究. 无机材料学报(Journal of Inorganic Materials), 2009, 24(1): 139-142.[11] Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite. J. Power Sources, 2001, 97-98: 503-507.[12] Prosini P P, Zane D, Pasquali M. Improved electrochemical performance of a LiFePO4-based composite cathode. Electrochim. Acta, 2001, 46(23): 3517-3523.[13] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater., 2002, 1: 123-128.[14] 唐致远, 高 飞, 薛建军(TANG Zhi-Yuan, et al). Li0.97+δTi0.03Fe0.97Mn0.03PO4/C复合材料的制备及其电化学性能研究. 无机材料学报(Journal of Inorganic Materials), 2008, 23(2): 295-300.[15] 周 鑫, 赵新兵, 余红明, 等(ZHOU Xin, et al). F掺杂LiFePO4/C的固相合成及电化学性能. 无机材料学报(Journal of Inorganic Materials), 2008, 23(3): 587-591.[16] 华 宁, 王辰云, 康雪雅, 等(HUA Ning, et al). 碳热还原法制备Zn掺杂的LiFePO4及其电化学性能. 无机材料学报(Journal of Inorganic Materials), 2010, 25(8): 887-891.[17] Belharouak I, Johnson C, Amine K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochem. Commun., 2005, 7(10): 983-988.[18] Zhao B, Jiang Y, Zhang H J, et al. Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J. Power Sources, 2009, 189(1): 462-466.[19] Marcinek M L, Wilcox J W, Doeff M M, et al. Microwave plasma chemical vapor deposition of carbon coatings on LiNi1/3Co1/3Mn1/3O2 for Li-ion battery composite cathodes. J. Electrochem. Soc., 2009, 156(1): A48-A51.[20] Nakamura T, Shima Y, Matsui H, et al. Synthesis of LiFePO4/C composite particles by gas-solid phase reaction and their electrochemical properties. J. Electrochem. Soc., 2010, 157: A544-A549.[21] Tatsumi K, Zaghib Y, Abe H. Anode performance of vapor-grown carbon fiber in secondary Lithium-ion batteries. J. Electrochem. Soc., 1995, 142(4): 1090-1096.[22] Endo Y, Nishimura T, Takahashis K, et al. Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery. J. Phys. Chem. Solids, 1996, 57(6/7/8): 725-728.[23] Endo M, Kim Y A, Hayashi T, et al. Vapor-grown carbon fiber basic properties and their battery applications. Carbon, 2001, 39(9): 1287-1297.[24] Chen C C, Liu M H, Chen J M. Influence of Addition of VGCF on LiFePO4 Cathode Materials in Li-ion Batteries. 206th meeting of the Electrochemical Society. Honolulu: American Electrochemical Society, Meeting Abstracts, 2004: 413.[25] Jin B, Jin E M, Park K H, et al. Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery. Electrochem. Commun., 2008, 10(10): 1537-1540.[26] Higuchi M, Katayama K, Azuma Y, et al. Synthesis of LiFePO4 cathode material by microwave processing. J. Power Sources, 2003, 119-121: 258-261.[27] 曾燮榕, 邓 飞, 邹继兆, 等. 碳包覆的磷酸铁锂微波制备方法和碳包覆的磷酸铁锂材料. 中国发明专利, CN101714634 A. 2010.05.26.[28] 曾燮榕, 邹继兆, 梅 成, 等.微波热解沉积致密化装置. 中国发明专利, CN1693872. 2005.11.09.[29] Deng F, Zeng X R, Zou J Z, et al. Design and synthesis of in-situ VGCFs improved LiFePO4 composite cathode materials. J. New Mat. Electrochem. Systems, 2011, 14(1): 27-30[30] Deng F, Zeng X R, Zou J Z, et al. Synthesis of LiFePO4 in situ vapor-grown carbon fiber (VGCF) composite cathode material via microwave pyrolysis chemical vapor deposition. Chinese Sci. Bul., 2011, 56(17): 1832-1835. [31] Zou J Z, Zeng X R, Xiong X B, et al. Preparation of vapor grown carbon fiber by microwave pyrolysis chemical vapor deposition. Carbon, 2007, 45(4): 828-832.[32] Ajayan P M, Nugent J M, Siegel R W, et al. Growth of carbon micro- trees. Nature, 2000, 404: 243. |