[1] Macek J, Novosel B, Marinsek M. Ni-YSZ SOFC anodes—Minimization of carbon deposition. Journal of the European Ceramic Society, 2007, 27(2/3): 487-491.[2] Grgicak C M, Green R G, Giorgi J B. SOFC anodes for direct oxidation of hydrogen and methane fuels containing H2S. Journal of Power Sources, 2008, 179(1): 317-328.[3] Ormerod R M, Singhal S C, Kendall K. High Temperature Fuel Cells: Fundamentals, Design and Applications. Elsevier, 2003: 333-361.[4] Chuna C M, Ramanarayanan T A. Mechanism and control of carbon deposition on high temperature alloys. Journal of the Electrochemical Society, 2007, 154(9): C465-C471.[5] Matsui T, Iida T, Kikuchi R, et al. Carbon deposition over Ni–scsz anodes subjected to various heat-treatments for internal reforming of solid oxide fuel cells. Journal of the Electrochemical Society, 2008, 155(11): B1136-B1140.[6] Xu Z R, Fu X Z, Luo J L, et al. Carbon deposition on vanadium- based anode catalyst for SOFC using syngas as fuel. Journal of the Electrochemical Society, 2010, 157(11): B1556-B1560.[7] Koh J H, Yoo Y S, Park J W, et al. Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel. Solid State Ionics, 2002, 149(3/4): 157-166.[8] Koh J H, Kang B S, Lim H C, et al. Thermodynamic analysis of carbon deposition and electrochemical oxidation of methane for SOFC anodes. Electrochemical and Solid-State Letters, 2001, 4(2): A12-A15.[9] Finnerty C M, Coe N J, Cunningham R H, et al. Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane. Catalysis Today, 1998, 46(2/3): 137-145.[10] Nikooyeh K, Clemmer R, Alzate-Restrepo V, et al. Effect of hydrogen on carbon formation on Ni/YSZ composites exposed to methane. Applied Catalysis A: General, 2008, 347(1): 106-111.[11] Alzate-Restrepo V, Hill J M. Carbon deposition on Ni/YSZ anodes exposed to CO/H2 feeds. Journal of Power Sources, 2010, 195(5): 1344-1351.[12] Miao H, Wang W G, Li T S, et al. Effects of coal syngas major compositions on Ni/YSZ anode-supported solid oxide fuel cells. Journal of Power Sources, 2010, 195(8): 2230-2235.[13] Wang Y Z, Yoshiba F, Watanabe T, et al. Numerical analysis of electrochemical characteristics and heat/species transport for planar porous-electrode-supported SOFC. Journal of Power Sources, 2007, 170(1): 101-110.[14] Wang Y Z, Yoshiba F, Takao, K, et al. Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC. International Journal of Hydrogen Energy, 2009, 34(9): 3885-3893. [15] 于建国, 王玉璋, 翁史烈. 以煤气化合成气为燃料的平板式固体氧化物燃料电池性能. 中国电机工程学报, 2010, 30(35): 88-93.[16] Hou K, Hughes R. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst. Chem. Eng. J., 2001, 82(1/2/3): 311-328.[17] Xu J, Forment G F. Methane steam reforming methanation and water gas shift - I. Intrinsic kinetics. AIChE J., 1989, 35(1): 88-96.[18] Yu J G, Wang Y Z, Xu L, et al. Development and Investigation on the Study State of Solid Oxide Fuel Cell and Hybrid Power System. Proceedings of the 1st International Conference on Sustainable Power Generation and Supply. China, 6-7 April 2009.[19] Yu J G, Wang Y Z, Hui Y, et al. The Effect of Anode porosity on the Performance of Planar Electrode Supported Solid Oxide Fuel Cell. Proceedings of ASME 2009 2nd Micro/Nanoscale Heat & Mass Transfer International Conference. Shanghai, 2009: 259-264.[20] Simbeck D R, Korens N, Biasca F E, et al. Coal Gasification Guidebook: Status, Applications, and Technologies. USA: Electric Power Research Institute, 1993: 15-40. |