[1] Zhang Z, Feng S S. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly (lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials, 2006, 27(21): 4025-4033.[2] Schugens C, Grandfils C, Jerome R, et al. Preparation of a macroporous biodegradable polylactide implant for neuronal transplantation. J. Biomed. Mater. Res., 1995, 29(11): 1349-1362. [3] Janorkar A V, Metters A T, Hirt D E. Modification of poly (lactic acid) films: enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process. Macromolecules, 2004, 37(24): 9151-9159.[4] Tokiwa Y, Calabia B P. Biodegradability and biodegradation of poly(lactide). Appl. Microbiol. Biotechnol., 2006, 72(2): 244-251.[5] Hench L L, Anderson O. Hench L L, Wilson J, editors. An Introduction to Bioceramics. Singapore: World Scientific, 1993: 41-62.[6] Kokubo T. Surface chemistry of bioactive glass-ceramics. J. Non-Cryst. Solids, 1990, 120(1/2/3): 138-151.[7] Liu X Y, Ding C X. Apatite formed on the surface of plasma sprayed wollastonite coating immersed in simulated body fluid. Biomaterials, 2001, 22(14): 2007-2012.[8] Liu X Y, Tao S Y, Ding C X. Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials, 2002, 23(3): 963-968.[9] Ni S, Chang J, Chou L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. J. Biomed. Mater. Res. A, 2006, 76(1): 196-205.[10] Cai X, Shen X Y, Chen W X, et al. Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta. Biomater., 2009, 5(7): 2693-2703.[11] Yan S F, Yin J B, Yang J Y. Structural characteristics and thermal properties of plasticized poly (L-lactide)-silica nanocomposites synthesized by Sol–Gel method. Mater. Lett., 2007, 61(13): 2683-2686.[12] Maiti P, Yamada K, Okamoto M, et al. New polylactide/layered silicate nanocomposites:-role of organoclays. Chem.Mater., 2002, 14(11): 4654-4661.[13] Hofacker R, Mechtel M, Mager M, et al. Sol-Gel: a new tool for coatings chemistry. Prog. Org. Coat., 2002, 45(2/3): 159-164.[14] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials, 2006, 27(15): 2907-2915.[15] Liu H C, Lee I C, Wang J H, et al. Preparation of PLLA membranes with different morphologies for culture of MG-63 cells. Biomaterials, 2004, 25(18): 4047-4056. [16] Kim I Y, Kawachi G, Kikuta K, et al. Preparation of bioactive spherical particles in the CaO–SiO2 system through Sol–Gel processing under coexistence of poly (ethylene glycol). J. Eur. Ceram. Soc., 2008, 28(8): 1595-1602.[17] Murugan R, Ramakrishna S. In situ formation of recombinant humanlike collagen–hydroxyapatite nanohybrid through bionic approach. Appl. Phys. Lett., 2006, 88(19): 193124-1-3.[18] Weng J, Liu Q, Wolke J G C, et al. Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. Biomaterials, 1997, 18(15): 1027–1035.[19] Takadama H, Kim H M, Kokubo T, et al. Mechanism of biomineralization of apatite on a sodium silicate glass: TEM-EDX study in vitro. Chem. Mater., 2001, 13(3): 1108-1113.[20] Gao T J, Aro H T, Yl-nen H, et al. Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials, 2001, 22(12): 1475-1483. |