[1] Matsutani T, Asanuma T, Liu C, et al. Ion beam-induced chemical vapor deposition with hexamethyldisilane for hydrogenated amorphous silicon carbide and silicon carbonitride films. Surf. Coat. Tech., 2003, 169-170: 624-627.[2] An L, Riedel R, Konetschny C, et al. Newtonian viscosity of amorphous silicon carbonitride at high temperature. J. Am. Ceram. Soc., 1998, 81(5): 1349-1352.[3] Chen L C, Chen C K, Wei S L. Crystalline silicon carbon nitride: a wide band gap semiconductor. Appl. Phys. Lett., 1998, 72(19): 2463-2465. [4] Raj R, An L, Shah S, et al. Oxidation kinetics of an amorphous silicon carbonitride ceramic. J. Am. Ceram. Soc., 2001, 84(8): 1803-1810.[5] Niiharra K, Izaki K, Kawakami T. Hot-pressed Si3N4-32% SiC nanocomposite from amorphous Si-C-N powder with improved strength above 1200℃. J. Mater. Sci. Lett., 1990, 10(2): 112-114.[6] Besson J L, Doucey B, Lucas S, et al. SiCN nanocomposite: creep behaviour. J. Eur. Ceram. Soc., 2001, 21(7): 959-968.[7] Besson J L, Mayne M, Bahloul-Hourlier D, et al. Si3N4/SiCN nanocomposites: influence of SiC nanoprecipitates on the creep behaviour. J. Eur. Ceram. Soc., 1998, 18(13): 1893-1904.[8] Schmidt H, Borchardt G, Muller A, et al. Formation kinetics of crystalline Si3N4/SiC composites from amorphous Si-C-N ceramics. J. Non -Cryst. Solids, 2004, 341(1/2/3): 133-140.[9] Kleebe H J, Suttor D, Müller H, et al. Decomposition-crystallization of polymer-derived Si-C-N ceramics. J. Am. Ceram. Soc., 1998, 81(11): 2971-2977.[10] Du X W, Fu Y. The evolution of microstructure and photoluminescence of SiCN films with annealing temperature. J. Appl. Phys., 2006, 99(9): 093503-1-4.[11] Kleps I, Caccavale F, Brusatin G, et al. LPCVD silicon carbide and silicon carbonitride films using liquid single precursors. Vacuum, 1995, 46(8/9/10): 979-981.[12] Mayne M, Bahloul-Hourlier D, Doucey B, et al. Thermal behaviour of SiCN nanopowders issued from laser pyrolysis. J. Eur. Ceram. Soc., 1998, 18(9): 1187-1194.[13] Seifert H J, Peng J, Lukas H L, et al. Phase equilibria and thermal analysis of Si–C–N ceramics. J. Alloys Compd., 2001, 320(2): 251-261.[14] Iwamoto Y, V-lger W, Kroke E, et al. Crystallization behavior of amorphous silicon carbonitride ceramics derived from organometallic precursors. J. Am. Ceram. Soc., 2001, 84(10): 2170-2178.[15] Seitz J, Bill J, Egger N, et al. Structural investigations of Si/C/N ceramics from polysilazane precursors by nuclear magnetic resonance. J. Eur. Ceram. Soc., 1996, 16(8): 885-891.[16] Dürr J, Lamparter P, Bill J, et al. An X-ray and neutron scattering investigation of precursor derived Si24C43N33 ceramics. J. Non. Cryst. Solids, 1998, 232–234: 155-161. [17] Trassl S, Kleebe H J, St-rmer H, et al. Characterization of the free-carbon phase in Si-C-N ceramics: Part II, comparison of different polysilazane precursors. J. Am. Ceram. Soc., 2002, 85(5): 1268-1274. [18] Tra-l S, Suttor D, Motz G, et al. Structural characterisation of silicon carbonitride ceramics derived from polymeric precursors. J. Eur. Ceram. Soc., 2000, 20(2) 215-225.[19] Kleebe H J, St-rmer H, Trassl S, et al. Thermal stability of SiCN ceramics studied by spectroscopy and electron microscopy. Appl. Organometal. Chem., 2001, 15(10): 858-866. [20] Friess M, Bill J, Golczewski J, et al. Crystallization of polymer- derived silicon carbonitride at 1873K under nitrogen overpressure. J. Am. Ceram. Soc., 2002, 85(10): 2587-2589.[21] Li Y L, Liang Y, Zheng F, et al. Laser synthesis of ultrafine Si3N4-SiC powders from hexamethyldisilazane. Mat. Sci. Eng., 1994, 174(2): L23-L26.[22] Golczewski J A. Thermodynamic analysis of structural transformations induced by annealing of amorphous Si-C-N ceramics derived from polymer precursors. Int. J. Mat. Res., 2006, 97(6): 729-736. |