无机材料学报 ›› 2011, Vol. 26 ›› Issue (7): 685-690.DOI: 10.3724/SP.J.1077.2011.00685

• 研究论文 • 上一篇    下一篇

SDC中间层的阳极支撑型LSGM电解质膜SOFC的制备及性能研究

郭为民1,2, 裴俊彦1, 梁红瑜1, 刘 江2   

  1. (1. 广西工学院 生物与化学工程系, 柳州545006; 2. 华南理工大学 化学与化工学院, 广州510640)
  • 收稿日期:2010-09-12 修回日期:2010-11-04 出版日期:2011-07-20 网络出版日期:2011-06-20
  • 作者简介:郭为民(1972-), 男, 博士, 副研究员. E-mail: guoweimin8@163.com
  • 基金资助:

    国家自然科学基金(20976063); 教育部科学技术研究重点项目(210163); 广西自然科学基金(2010GXNSF- A013045)

Preparation and Performance of Anode-supported LaGaO3-based Electrolyte Solid Oxide Fuel Cells with Sm-doped CeO2 Buffer Layers

GUO Wei-Min1,2, PEI Jun-Yan1, LIANG Hong-Yu1, LIU Jiang2   

  1. (1. Department of Biological & Chemical Engineering, Guangxi University of Technology, Liuzhou 545006, China; 2. School of Chemistry and Engineering, South China University of Technology, Guangzhou 510640, China)
  • Received:2010-09-12 Revised:2010-11-04 Published:2011-07-20 Online:2011-06-20
  • Supported by:

    National Natural Science Foundation of China (20976063); Key Project of the Ministry of Education of China (210163); Natural Science Foundation of Guangxi Zhuang Autonomous Region (2010GXNSFA013045)

摘要: 采用离心沉降法及高温共烧结工艺在多孔NiO-Sm0.2Ce0.8O1.9(SDC)阳极上成功地制备了SDC/LSGM (La0.9Sr0.1Ga0.8Mg0.2O3-δ)/SDC电解质薄膜. 经共烧结制备了11μmSDC/15μmLSGM/13μmSDC三层复合电解质薄膜. 电池在800℃最大输出功率密度为0.92W/cm2, 但电池的开路电压0.89V低于理论电动势. 电池微结构和元素分析表明, 高温共烧结时Ni扩散到LSGM电解质薄膜中引起电子电导, 导致电池开路电压偏低. 阻抗谱测试表明, 引入SDC电解质作为隔离层后, 欧姆极化过程和电极极化过程共同影响电池的性能

关键词: 固体氧化物燃料电池, La0.9Sr0.1Ga0.8Mg0.2O3–δ, Sm0.2Ce0.8O1.9, 性能

Abstract: Anode-supported solid oxide fuel cells (SOFCs) composed of NiO-SDC (Sm0.2Ce0.8O1.9) composite anode, thin tri-layer electrolyte, and La0.6Sr0.4Co0.8Fe0.2O3 (LSCF)-La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) composite cathode were fabricated. The thin 11μmSDC/15μmLSGM/13μmSDC tri-layer electrolyte was prepared by centrifugal casting and co-firing technique. Cell tests in air as oxidant and humidified hydrogen as fuel show a maximum power density of 0.92W/cm2 at 800℃. However, the open-circuit voltage (OCV) of these cells is 0.89V which is lower than the Nernst potential. The above result is due to electronic conductivity in the LSGM layer, resulting from Ni impurities that entered during co-firing with the NiO-SDC anode. While the SDC buffer layers are introduced as buffer layers, impedance measurements indicate that both the ohmic resistance and the polarization resistance dominate the cell performance.

Key words: solid oxide fuel cells, La0.9Sr0.1Ga0.8Mg0.2O3-δ, Sm0.2Ce0.8O1.9, performance

中图分类号: