[1] Hu Y S, Guo Y G, Dominko R, et al. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv. Mater., 2007, 19(15): 1963-1966. [2] 张联齐, 任丽彬, 刘兴江, 等. Li过量的层状结构锂离子电池材料Li1+xM1-xO2(x≥0)-I.LiAO2-Li2BO3(A=Co, Ni, Cr·…; B=Mn, Ti…)固熔体材料. 电源技术, 2009, 33(5): 426-429.[3] Numata K, Sakaki C, Yamanaka S. Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries. Chem. Lett., 1997(8): 725-726.[4] Tabuchi M, Nakashima A, Shigemura H, et al. Synthesis cation distribution,and electrochemical properties of Fe-substituted Li2MnO3 as a novel 4 V positive electrode material. J. Electrochem. Soc., 2002, 149(5): A509-A524.[5] Lu Z, Macneil D D, Dahn J R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries. Electrochem. Solid-State Lett., 2001, 4(11): A191-A194.[6] Lu Z, Beaulieu L Y, Donaberger R A. Synthesis, structure, and electrochemical behavior of Li[NiLiMn]O. J. Electrochem. Soc., 2002, 149(6): A778-A791[7] Lu Z H, Dahn J R. Understanding the anomalous capacity of Li/Li[NixLi1/3-2x/3Mn2/3-x/3]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc., 2002, 149(7): A815-A822. [8] 王绥军, 赵煜娟, 赵春松, 等(WANG Sui-Jun, et al). 锂离子电池富锂正极材料Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (x=1/5, 1/4, 1/3)的合成及电化学性能. 高等学校化学学报(Chem. J. Chinese U.), 2010, 30(12): 2358-2362.[9] Lee D K, Park S H, Amineb K, et al. High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method. Journal of Power Sources, 2006, 162(2): 1346-1350. [10] Tabuchi M, Nabeshima Y, Ado K, et al. Material design concept for Fe-substituted Li2MnO3-based positive electrodes. J. Power Sources, 2007, 174(2): 554-559.[11] Kim J H, Park C W, Sun Y K. Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode materials. Solid State Ionics, 2003, 164(1): 43-49.[12] Kim J M, Tsuruta S, Kumagai N. Electrochemcial properties of Li[CoxLi(1/3-x/3)Mn(2/3-2x/3)]O2(0≤x≤1) solid solutions prepared by poly-vinyl alcohol(PVA) method. Electrochem. Commun., 2007, 9(1): 103-108.[13] Tang A, Huang K. Structure and electrochemical properties of Li1+yNi0.5AlxMn0.5-xO2synthesized by a new Sol-Gel method. Materials Chemistry and Physics, 2005, 93(1): 6-9. [14] Huang X K, Zhang Q S, Chang H T, et al. Hydrothermal synthesis of nanosized LiMnO2-Li2MnO3 compounds and their electrochemical performances. Journal of The Electrochemical Society, 2009, 156(3): A162-A168.[15] Lee Y J, Kim M G, Cho J. Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material. Nano Lett., 2008, 8(3): 957-961. [16] Kim M G, Jo M, Hong Y S, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem. Commun., 2009(2): 218-220.[17] Numata K, Sakaki C, Yamanaka S. Synthesis and characterization of layer structured solid solutions in the system of LiCoO2- Li2MnO3. Solid State Ionics, 1999, 117(3/4): 257-263.[18] Sun Y C, Xia Y G, Noguchi H, et al. The preparation and electrochemical performance of solid solutions LiCoO2-Li2MnO3 as cathode materials for lithium ion batteries. Journal of Power Sources, 2006, 159(2): 1353-1359.[19] Kim Y J, Hong Y S, Kim M G, et al. Li0.93 [Li0.21Co0.28Mn0.51]O2 nanoparticles for lithium battery cathode material made by cationic exchange from K-birnessite. Electrochem. Commun., 2007, 9(5): 1041-1046. [20] 赵春松. 锂离子电池富锂正极材料xLi2MnO3·(1-x)LiMO2 (M=Co, Ni0.5Mn0.5). 北京: 北京工业大学硕士论文, 2010.[21] Johnson C S, Li N, Thackerray M M, et al. Anomalous capacity and cycling stability of xLi2MnO3·(1-x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50℃. Electrochem. Commun., 2007, 9(4): 787-795.[22] Wu Y, Manthiram A. Effect of surface modifications on the layered solid solution cathodes (1-z)Li[Li1/3Mn2/3]O2·zLi[Mn0.5-y Ni0.5-yCo2y]O2. Solid State Ionics, 2009, 180(1): 50-56.[23] Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc., 2006, 128(26): 8694-8698.[24] 王力臻, 刘勇标, 王先友, 等. 化学电源设计. 北京: 化学工业出版社, 2007: 12-13.[25] Tabuchi M, Nabeshima Y, Takeuchi T, et al. Fe content effects on electrochemical properties of Fe-substituted Li2MnO3 positive electrode material. Journal of Power Sources, 2010, 195(3): 834-844.[26] Cho J, Kim Y, Kim M G. Synthesis and characterization of Li[Ni0.41Li0.08Mn0.51]O2 nanoplates for Li battery cathode material. J. Phys. Chem. C, 2007, 111(7): 3192-3196. [27] Yu L Y, Qiu W H, Lian F, et al. Comparative study of layered 0.65Li[Li1/3Mn2/3]O2·0.35LiMO2 (M = Co, Ni1/2Mn1/2 and Ni1/3Co1/3Mn1/3) cathode materials. Materials Letters, 2008, 62(17/18): 3010-3013.[28] Myung S T, Izumi K, Komaba S, et al. Functionality of oxide coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for lithium-ion secondary batteries. J. Phys. Chem. C, 2007, 111(10): 4061-4067 [29] Myung S T, Izumi K, Komaba S, et al. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium- ion batteries. Chem. Mater., 2005, 17(14): 3695-3704.[30] Kang Y J, Kim J H, Lee S W, et al. The effect of Al(OH)3 coating on the Li[Li0.2Ni0.2Mn0.6]O2 cathode material for lithium secondary battery. Electrochimica Acta, 2005, 50(24): 4784-4791.[31] Tan K S, Reddy M V, Rao GVS, et al. Effect of AlPO4-coating on cathodic behaviour of Li(Ni0.8Co0.2) O2. Journal of Power Sources, 2005, 141(1): 129-142.[32] Zheng J M, Li J, Zhang Z R, et al. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics, 2008, 179(27-32): 1794-1799.[33] Johnson C S, Kim J S, Lefief C, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3-(1-x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun., 2004, 6(10): 1085-1091.[34] Johnson C S, Li N, Vaughey J T, et al. Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3-(1-x) Li1+yMn2-yO4(0[35] Johnson C S, Li N, Lefief C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3- (1-x)LiMn0.333Ni0.333Co0.333O2(0≤x≤0.7). Chem. Mater., 2008, 20(19): 6095-6106.[36] Kang S H, Johnson C S,Vaughey J T, et al. The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3- 0.5LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells. J. Electrochem. Soc., 2006, 153(6): A1186-A1192.[37] Gao J, Kim J, Manthiram A, et al. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries. Electrochem. Commun., 2009, 11(1): 84-86.[38] Kang S H, Thackeray M M. Enhancing the rate capability of high capacity xLi2MnO3·(1-x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment. Electrochem. Commun., 2009, 11(4): 748-751. [39] Wang Q Y, Liu J, Murugan A V, et al. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability. J. Mater. Chem., 2009, 19(28): 4965-4972.[40] Jiao L F, Zhang M, Yuan H T, et al. Effect of Cr doping on the structural, electrochemical properties of Li[ |