[1] Oya A, Yoshida S, Abe Y, et al. Antibacterial activated carbon fiber derived from phenolic resin containing silver nitrate. Carbon, 1993, 31(1): 71-73.
[2]OrtizIbarra H, Casillas N, Soto V, et al. Surface characterization of electrodeposited silver on activated carbon for bactericidal purposes. J. Colloid Interface Sci., 2007, 314(2): 562-571.
[3]Park S J, Jane Y S. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. J. Colloid Interface Sci., 2003, 261(2): 238-243.
[4]Zhang S, Fu R, Wu D, et al. Preparation and characterization of antibacterial silverdispersed activated carbon aerogels. Carbon, 2004, 42(15): 3209-3216.
[5]Jin Y Z, Gao C, Hsu K W, et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon, 2005, 43(9): 1944-1953.
[6]Xu L, Zhang W, Yang Q, et al. A novel route to hollow and solid carbon spheres. Carbon, 2005, 43(5): 1090-1092.
[7]Yang J B, Ling L C, Liu L, et al. Preparation and properties of phenolic resinbased activated carbon spheres with controlled pore size distribution. Carbon, 2002, 40(6): 911-916.
[8]Wang Q, Cao F, Chen Q, et al. Preparation of carbon microspheres by hydrothermal treatment of methylcellulose sol. Mater. Lett., 2005,59(28): 3738-3741.
[9]Kim T N, Feng Q L, Kim J O, et al. Antimicrobial effects of metal ions (Ag +, Cu 2+, Zn 2+ ) in hydroxyapatite. J. Mater. Sci.: Mater. Med., 1998, 9(3): 129-134.
[10]叶 瑛,周玉航,夏枚生,等(YE Ying, et al). 新型无机抗菌材料: 载铜蒙脱石及其抗菌机理讨论.无机材料学报(Journal of Inorganic Materials),2003,18(3): 569-574.
[11]张 彬,唐晓宁,张皓东. 铜, 银双组分无机抗菌材料的制备和性能研究. 化工新型材料,2007, 35(2): 73-75.
[12]Tan S Z, Zhang L L, Huang L H, et al. Study on the heat treating process of silver-carried antibacterial agent. J. Ceram. Soc. Japan, 2007, 115(4): 269-271.
[13]Tan S Z, Ouyang Y S, Zhang L L, et al. Study on the structure and antibacterial activity of silver-carried zirconium phosphate. Mater. Lett., 2008, 62(14):2122-2124.
[14]Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure & App. Chem., 1985, 57(4): 603-619.
[15]Rouquerol F, Rouquerol J, Sing K. Adsorption by Powders and Porous Solids: Priciples, Methodology, Applications. New York: Academic Press, 1999.
[16]Lee K T, Lytle J C, Ergang N S, et al. Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv.Funct. Mater., 2005, 15(4): 547-556.
[17]Wang Z, Ergang N S, AlDaous M A, et al. Synthesis and characterization of three-dimensionally ordered macroporous carbon/titania nanoparticle composites. Chem. Mater., 2005, 17(26):6805-6813.
[18]Kim Y H, Lee D K, Cha H G, et al. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J. Phys. Chem. B,2006, 110(49): 24923-24928.
[19]Zhang W, Zhang Y H, Ji J H, et al. Antimicrobial properties of copper plasma-modified polyethylene. Polymer, 2006, 47(21): 7441-7445.
[20]Bond A M, Miao W J, Raston C L. Mercury (Ⅱ) immobilized on carbon nanotubes: synthesis, characterization and redox properties. Langmuir,2000, 16(14): 6004-6012.
[21]Yuan D, Liu Y. Electroless deposition of Cu on multiwalled carbon nanotubes. Rare Met., 2006, 25(3): 237-240.
[22]Zhao D F, Zhou J, Liu N. Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Appl. Clay Sci., 2006, 33(3/4): 161-170.
[23]Trapalis C C, Kokkoris M, Perdikakis G, et al. Study of antibacterial composite Cu/SiO2 thin coatings. J. Sol-Gel Sci. Technol., 2003, 26(3): 1213-1218.
[24]李炜罡,吕维平,王海滨,等. 抗菌材料进展. 化工新型材料,2003,31(3): 7-10.
|