[1]Reaney I M, Iddles D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc., 2006, 89(7): 2063-2072.
[2] Fujii T, Ando A, Sakabe Y. Charaterization of dielectric properties of oxide materials in frequency range from GHz to THz. J. Eur. Ceram. Soc., 2006, 26(10/11):1857-1860.
[3] Penn S J, Alford N McN, Templeton A, et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc., 1997, 80(7): 1885-1888.
[4] Zheng C W, Wu S Y, Chen X M, et al. Modification of MgAl2O4 microwave dielectric ceramics by Zn-substitution. J. Am. Ceram. Soc., 2007,90(5): 1483-1486.
[5] Lei W, Lu W Z, Zhu J H, et al. Modification of ZnAl2O4-based lowpermittivity microwave dielectric ceramics by adding 2MO-TiO2(M=Co, Mg and Mn).J. Am. Ceram. Soc., 2008, 91(6): 1958-1961.
[6] Tsunooka T, Androu M, Higashida Y, et al. Microwave dielectric properties of forsterite based solid solutions. J. Eur. Ceram. Soc., 2003, 23(14): 2573-2578.
[7] Guo Y P, Ohsato H, Kakimoto K. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. J. Eur. Ceram. Soc., 2006, 26(10/11):1827-1830.
[8] Song M E, Kim J S, Joung M R, et al. Synthesis and microwave dielectric properties of MgSiO3 ceramics. J. Am. Ceram. Soc., 2008, 91(8):2747-2750.
[9] Song K X, Chen X M. Phase evolution and microwave dielectric characteristics of Ti-substituted Mg2SiO4 forsterite ceramics. Mater. Lett., 2007,61(17): 3127-3131.
[10] Hakki B W, coleman P D. A dielectric resonant method of measuring inductive capacitance in the millimeter range. IRE Trans. Micro. Theor. Tech., 1960, 8(4): 402-410.
[11] Segnit E R, Holland A E. The system MgO-ZnO-SiO2. J. Am. Ceram. Soc. , 1965, 48(8): 409-413. |