[1]Ohzuku T, Ueda A, Yamamoto N. Zerostrain insertion materials of Li[Li 1/3 Ti 5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc., 1995,142(5): 1431-1435.
[2]Mukai K, Ariyoshi K, Ohzuku T. Comparative study of Li[CrTi]O4, Li[Li 1/3 Ti 5/3]O4 and Li1/2Fe1/2[Li 1/2 Fe 1/2 Ti]O4 in nonaqueous lithium cells. J. Power Sources, 2005, 146(1/2): 213-216.
[3]Zaghib K, Simoneau M, Armand M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. J. Power Sources, 1999, 81-82: 300-305.
[4]Ariyoshi K, Yamato R, Ohzuku T. Zero-strain insertion mechanism of Li[Li 1/3 Ti 5/3]O for advanced lithiumion (shuttlecock) batteries. Electrochim. Acta, 2005, 51(6): 1125-1129.
[5]Ge H, Li N, Li D Y, et al. Study on the effect of Li doping in spinel Li 4+x Ti 5-x O12 (0≤x≤2) materials for lithium-ion batteries. Electrochem. Commun., 2008, 10(7): 1031-1034.
[6]Huang S H, Wen Z Y, Zhu X J, et al. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries. J. Power Sources, 2007, 165(1): 408-412.
[7]Wolfenstine J, Allen J L. Electrical conductivity and charge compensation in Ta doped Li4Ti5O12.J. Power Sources, 2008, 180(1): 582-585.
[8]Robertson A D, Trevino L, Tukamoto H, et al. New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries. J. Power Sources, 1999, 81-82: 352-357.
[9]Sun Y K, Jung D J, Lee Y S, et al. Synthesis and electrochemical characterization of spinel Li[Li (1-x)/3 CrxTi (5-2x) /3]O4 anode materials. J. Power Sources, 2004, 125(2): 242-245.
[10]苏岳峰, 吴 峰, 臧 戈, 等(SU YueFeng, et al). 多孔炭模板法制备Li4Ti5O12及其嵌锂行为. 物理化学学报(Acta Phys.Chim. Sin.), 2008, 24(6): 1002-1006.
[11]Guefri A, Charest P, Kinoshita K, et al. Nano electronically conductive titaniumspinel as lithium ion storage negative electrode. J. Power Sources, 2004,126(1/2): 163-168.
[12]Cheng L, Li X L, Liu H J, et al. Carboncoated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J. Electrochem. Soc., 2007, 154(7): A692-A697.
[13]Wang G J, Gao J, Fu L J, et al. Preparation and characteristic of carboncoated Li4Ti5O12 anode material. J. Power Sources, 2007, 174(2): 1109-1112.
[14]Huang J J, Jiang Z Y. The preparation and characterization of Li4Ti5O12/carbon nanotubes for lithium ion battery. Electrochim. Acta, 2008, 53(26): 7756-7759.
[15]Liu H, Feng Y, Wang K, et al. Synthesis and electrochemical properties of Li4Ti5O12/C composite by the PVB rheological phase method. J. Phys. Chem. Solids, 2008, 69(8): 2037-2040.
[16]Jiang C H, Ichihara M, Honma I, et al. Effect of particle dispersion on high rate performance of nanosized Li4Ti5O12 anode. Electrochim. Acta, 2007, 52(23): 6470-6475.
[17]Jiang C H, Hosono E J, Ichihara M, et al. Synthesis of nanocrystalline Li4Ti5O12 by chemical lithiation of anatase nanocrystals and postannealing. J. Electrochem. Soc., 2008, 155(8): A553-A556.
[18]Choi D, Kumta P N. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. J. Power Sources, 2007, 163(1/2): 1064-1069.
[19]Bach S, PereiraRamos J P, Baffier N. Electrochemical properties of solgel Li 4/3 Ti 5/3 O4. J. Power Sources, 1999, 81-82: 273-276.
[20]Fu L J, Liu H, Li C, et al. Electrode materials for lithium secondary batteries prepared by sol-gel methods. Prog. Mater. Sci., 2005, 50(7): 881928.
[21]Xie D, Pan W. Study on BaBi4Ti4O15 nanoscaled powders prepared by sol-gel method. Mater. Lett., 2003, 57(19): 2970-2974.
[22]赵国玺. 表面活性剂物理化学. 北京: 北京大学出版社, 1984: 3663.
[23]Robertson A D, Tukamoto H, Irvine J T S. Li1+xFe13xTi1+2xO4 (0≤x≤0.33) based spinel: possible negative electrode materials for future Liion batteries. J. Electrochem. Soc., 1999, 146(11): 39583962.
[24]苏岳峰, 吴 峰, 陈朝峰(SU YueFeng, et al). 纳米微晶TiO2合成Li4Ti5O12及其嵌锂行为. 物理化学学报(Acta PhysChim. Sin.), 2004, 20(7): 707711.
[25]Kim D H, Ahn Y S, Kim J. Polyolmediated synthesis of Li4Ti5O12 nanoparticle and its electrochemical properties. Electrochem. Commun., 2005, 7(12): 13401344.
[26]Yuan T, Cai R, Wang K, et al. Combustion synthesis of highperformance Li4Ti5O12 for secondary Liion battery. Ceram. Int., 2009, 35(5): 17571768.
[27]Plett G L. Extended Kalman filtering for battery management systems of LiPBbased HEV battery packs: Part 2. Modeling and identification. J. Power Sources, 2004, 134(2): 277292.
[28]Wolfenstine J, Lee U, Allen J L. Electrical conductivity and ratecapability of Li4Ti5O12 as a function of heattreatment atmosphere. J. Power Sources, 2006, 154(1): 287289.
|