[1] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positiveelectrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[2]唐致远, 高 飞, 薛建军(TANG ZhiYuan, et al). Li 0.97+δ Ti 0.03Fe 0.97 Mn 0.03 PO4/C复合材料的制备及其电化学性能研究.无机材料学报(Journal of Inorganic Materials), 2008, 23(2): 295-300.
[3]Kim D K, Park H M, Jung S J, et al. Effect of synthesis conditions on the properties of LiFePO4 for secondary lithium batteries. Journal of Power Sources, 2006, 159(1): 237-240.
[4]Arnold G, Garche J, Hemmer R, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new lowcost aqueous precipitation technique. Journal of Power Sources, 2003, 119-121: 247-251.
[5]Singhal A, Skandan G, Amatucci G, et al. Nanostructured electrodes for next generation rechargeable electrochemical devices. Journal of Power Sources, 2004, 129(1): 38-44.
[6]Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid State Letters, 2001, 4(10): 170-172.
[7]Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite. Journal of Power Sources, 2001, 97-98: 503-507.
[8]Dominko R, Gaberscek M, Drofenik J, et al. Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochimica Acta, 2003, 48(24): 3709-3716.
[9]Choi D, Kumta P N. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. Journal of Power Sources, 2007, 163(2): 1064-1069.
[10]Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phosphoolivines as lithium storage electrodes. Nature Materials, 2002, 1(2): 123-128.
[11]Chung S Y, Chiang Y M. Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochemical and Solid State Letters, 2003, 6(12): 278-281.
[12]Barker J, Saidi M Y, Swoyer J L. Lithium iron [Ⅱ] phospho-olivines prepared by a novel carbonthermal reduction method. Electrochemical and Solid State Letters, 2003, 6(3): 53-55.
[13]Yang M R, Ke W H. The doping effect on the electrochemical properties of LiFe0.95M0.05PO4 (M Mg 2+, Ni 2+, Al 3+, or V 3+) as cathode materials for lithiumion cells. Journal of the Electrochemical Society, 2008, 155(10): 729-732.
[14]Hong J, Wang C S, Kasavajjula U. Kinetic behavior of LiFeMgPO4 cathode material for Li-ion batteries. Journal of Power Sources, 2006, 162(2): 1289-1296.
[15]周 鑫, 赵新兵, 余红明, 等 (ZHOU Xin, et al). F掺杂LiFePO4/C的固相合成及电化学性能.无机材料学报(Journal of Inorganic Materials), 2008, 23(3): 587-591.
[16]张玉荣, 王文继(ZHANG YuRong, et al). 锂离子电池正极材料Li 2+2x Ti 1-x Cux(NbO4)2的研究. 无机材料学报(Journal of Inorganic Materials), 2004, 19(2): 349353.
[17]Legagneur V, An Y, Mosbah A, et al. LiMBO3 (MMn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion properties. Solid State Ionics, 2001, 139(1/2): 37-46.
[18]Dong Y Z, Zhao Y M, Shi Z D, et al. The structure and electrochemical performance of LiFeBO3 as a novel Li-battery cathode material. Electrochimica Acta, 2008, 53(5): 2339-2345.
[19]谢 辉, 周震涛(XIE Hui, et al). 高温固相还原法合成LiFePO4/C正极材料及其电化学性能. 无机材料学报(Journal of Inorganic Materials), 2007, 22(4): 631-636.
[20]张自禄, 卢嘉春, 李雪松, 等. LiFePO4的蔗糖改性研究. 电池, 2007, 37(1): 3-5.
[21]Franger S, Le C F, Bourbon C, et al. LiFePO4 synthesis routes for enhanced electrochemical performance. Electrochemical and Solid State Letters, 2002, 5(10): 231-233. |