染料敏化太阳能电池用过渡金属化合物对电极的研究进展
王桂强, 王德龙, 况帅, 禚淑萍
山东理工大学 化工学院, 淄博 255049

王桂强(1969-), 男, 博士, 副教授. E-mail:wgqiang123@163.com

摘要

由于成本低、制作工艺简单、光电转换效率高, 染料敏化太阳能电池被认为是传统太阳能电池最有力的竞争者之一。染料敏化太阳能电池常用的对电极是Pt电极, Pt价格高, 储量少, 因此寻找一种价格便宜且催化性能较好的材料代替Pt制备对电极是目前的研究热点。过渡金属化合物品种多、制备过程简单、价格低且催化性能好, 近年来受到人们的广泛关注, 是代替Pt制备染料敏化太阳能电池对电极最好的材料之一。本文综述了染料敏化太阳能电池过渡金属化合物对电极的研究现状, 对过渡金属化合物对电极的性能特点及今后研究的重点进行了分析。

关键词: 对电极; 过渡金属化合物; 染料敏化太阳能电池; 综述
中图分类号:TK513   文献标志码:A    文章编号:1000-324X(2013)09-0907-09
Research Progress on Transition Metal Compound Used as Highly Efficient Counter Electrode of Dye-sensitized Solar Cells
WANG Gui-Qiang, WANG De-Long, KUANG Shuai, ZHUO Shu-Ping
College of Chemical Engineering, Shandong University of Technology, Zibo 255049, China
Abstract

Dye-sensitized solar cells (DSC) has been considered as one of the most promising alternatives to conventional photovoltaic device due to its low cost, simple fabrication process and high conversion efficiency. Pt-loaded conducting substrate has been widely exploited as the standard counter electrode for DSC. However, Pt is expensive and rare, so it is most desirable to seek a low-cost substitute for Pt in counter electrode of DSC. Transition metal compound has been demonstrated to be one of the most promising counter electrode materials for DSCs owing to its low cost, simple fabrication, broad variety of materials and good catalytic activity. This article provides a review of transition metal compound counter electrodes for DSC and a brief outlook on the future development of transition metal compound counter electrodes.

Keyword: counter electrode; transition metal compound; dye-sensitized solar cells; review

能源危机和环境污染是二十一世纪人类面临的最为严峻的两大挑战, 因此对可再生能源特别是太阳能的开发利用成为世界各国政府可持续发展的能源战略。染料敏化太阳能电池(Dye-Sensitized Solar Cells, DSCs)制作工艺简单、材料成本低廉、稳定性好, 自1991年其光电转换效率取得突破以来, 一直是国际研究的热点[ 1, 2, 3, 4, 5, 6, 7, 8, 9]。DSCs主要由三部分组成(图1): 染料敏化的TiO2纳晶多孔光阳极、含有氧化还原对(通常是I-/I3-)的电解质以及对电极。光照射到电池上, (1)吸附在TiO2上的染料分子吸收光由基态跃迁到激发态(D*); (2)激发态电子注入到TiO2导带后; (3)通过扩散传输到外电路, 经过外电路后到达对电极; (4)失去电子的氧化态染料(D+)分子被电解质中的I-还原, I-被氧化为I3-; (5)电解质中I3-通过扩散到达对电极, 在对电极接受外电路来的电子发生还原反应生成I-, 从而完成一个循环。对电极的主要作用是接受外电路电子, 催化I3-还原为I-。因此DSCs对电极应具有较好的导电性、催化活性以及稳定性。目前DSCs常用的对电极是Pt电极[ 10, 11, 12, 13, 14]。Pt是一种稀有贵金属, 价格较高, 而且在I-/I3-电解质体系中容易被腐蚀(生成PtI4或H2PtI6)[ 15]。因此, 用价格便宜、稳定性好的碳材料[ 16, 17, 18, 19, 20, 21, 22, 23, 24]、导电聚合物[ 25, 26, 27, 28, 29, 30, 31, 32, 33]及过渡金属化合物[ 34]代替Pt制备DSCs对电极引起了人们的广泛关注。与碳材料和导电聚合物相比, 过渡金属化合物种类及制备方法多样, 制备过程简单, 价格低, 而且具有较高的催化活性。因此, 近年来刊出了大量关于过渡金属化合物对电极的研究报道。本文就DSCs过渡金属化合物对电极进行综述, 对不同过渡金属化合物对电极的性能及制备方法进行分析比较。

图1 染料敏化太阳能电池结构及工作原理Fig. 1 The structure and operation principle of dye-sensitized solar cells

1 过渡金属硫化物对电极

2009年, Grätzel首先采用静电沉积将纳米CoS粒子沉积到ITO/聚萘二甲酸乙二醇酯薄膜(ITO/PEN)上, 制备了适用于DSCs的柔性对电极[ 35]。电化学分析表明所制备的CoS电极对I3-还原反应表现出很高的催化活性, 以这种柔性CoS电极作为对电极, DSCs的光电转换效率达到6.5%。Lin等[ 36, 37, 38]用动电沉积的方法, 通过优化沉积过程制备出多孔CoS对电极, 用这种CoS对电极组装的DSCs光电转换效率达到6.33%。Kung等[ 39]采用Co3O4纳米棒阵列沉积和化学浴离子交换两步法在FTO导电玻璃表面制备了CoS纳米棒阵列(图2a)。CoS纳米棒阵列电极的催化性能明显优于已报道的静电沉积和动电沉积法制备的CoS电极。以CoS纳米棒阵列电极作为对电极, DSCs的效率达到7.67%, 与相应Pt对电极电池效率(7.70%)一致。CoS纳米棒阵列电极性能较好的主要原因是由于表面粗糙的一维纳米棒具有较高的比表面积和较快的电子传输能力, 从而使所组装电池具有较高的光电流密度和填充因子。

图2 CoS纳米棒阵列电极[ 39] (a)和NiS纳米棒阵列电极[ 43] (b)横截面SEM照片(插图为平面放大SEM照片)Fig. 2 The cross-section SEM image of CoS acicular nanorod arrays[ 39] (a) and NiS nanorod arrays electrode[ 43] (b) (The inset shows a high magnification of SEM image)

Co和Ni同属VIII B族元素, 因此NiS对电极也引起了人们的关注。Chi等[ 40]通过溶液热分解反应合成棒状NiS纳米粒子。NiS粒子通过静电吸附在FTO导电玻璃表面形成稳定的膜。用这种静电自组装NiS电极作为对电极, DSCs的光电转换效率达到6.5%, 是相应Pt对电极电池效率(5.8%)的1.2倍。Sun等[ 41]采用电沉积法将NiS纳米粒子沉积到FTO玻璃表面制备NiS电极。以这种NiS电极组装DSCs, 光电转换效率达到6.83%, 与相应的Pt对电极电池效率(7.00%)相近。Ku等[ 42]采用透明的NiS对电极和ET-(1-乙基-1H-四氮唑-5-基巯基离子)/BET(双(1-乙基四氮唑-5-基)二硫)电解质体系, 电池的光电转换效率达到6.25%, 比相应Pt电极电池效率提高56%。Zhao等[ 43]用水热法在空白玻璃表面直接生长NiS单晶纳米棒阵列(图2b)。所制备的NiS纳米棒阵列膜具有独特的NiS致密层和NiS纳米棒阵列层双层结构。这种特殊的双层结构使NiS膜兼具导电和催化双重功能, 因此可同时取代FTO导电层和Pt。以NiS纳米棒阵列电极直接作为对电极, DSCs的光电效率达到7.41%, 与传统的Pt电极电池效率(7.55%)相近。Wu 等[ 44]制备了WS2和MoS2对电极, 相应DSCs的光电转换效率分别达到7.73%和7.59%。

2 过渡金属氮化物对电极

除了过渡金属硫化物, 过渡金属氮化物也被用来制备DSCs对电极。2009年, Jiang等[ 45]通过金属钛片阳极氧化结合氨气氮化制备了高度有序的TiN纳米管阵列电极(图3(a)和(b))。TiN纳米管阵列电极的电导性能和催化性能明显优于传统Pt/FTO电极。因此所组装DSCs的光电效率达到7.73%, 高于相应Pt/FTO电极电池的光电效率(7.45%)。很明显, TiN纳米管阵列电极电池光电转换效率较高的原因一方面是TiN纳米管阵列电极具有较低的欧姆内阻和较高的催化活性, 另一方面是高度有序排列的纳米管阵列结构有利于电子的传输, 从而提高了电池的填充因子。因此, TiN材料的形貌结构, 对TiN电极的性能有较大影响。Zhang等[ 46]制备的具有多级微纳结构的TiN微球(图3c)电极催化活性明显高于TiN平面电极和TiN颗粒电极。以多级微纳TiN微球电极组装的DSCs的光电转换效率达到7.83%, 比传统Pt/FTO电极电池的光电效率(6.04%)提高30%。

图3 TiN纳米管阵列的表面(a)和截面(b)SEM照片((b)中插图为TiN纳米管TEM照片)[ 45] 以及多级微纳结构TiN微球SEM照片(c)(插图为单个TiN微球SEM照片)[ 46]Fig. 3 SEM images of TiN nanotube arrays (a): top view, (b): cross section, the inset in (b) shows TEM image of TiN nanotube[ 45] and SEM image of the hierarchical micro/nano TiN sphere(c) (the inset shows single TiN sphere)[ 46]

Jiang等[ 47]用氨气分别对金属Ni片和Ni颗粒进行表面氮化, 制备了双层结构的NiN平面电极和NiN颗粒电极。NiN颗粒电极表面呈多孔结构, 具有较高的比表面积, 因而催化活性明显高于NiN平面电极。用NiN 颗粒电极组装的DSCs光电效率达到8.31%, 与相应的Pt 电极电池效率(8.41%)接近。Li等[ 48]用氨气对MoO2、WO3及Fe2O3进行氮化处理制备了MoN、WN和Fe2N电极。MoN电极对I3-的还原反应表现出很高的催化活性, 组装的DSCs光电效率达到5.57%。WN电极的催化活性与MoN电极相近, 但由于WN电极具有较大的扩散阻抗( ZN), 因此组装电池的效率不高(3.67%)。Wu等[ 49]用磁控溅射法将Mo2N和W2N沉积到Ti片上, 制备了柔性Mo2N和W2N电极。Mo2N和W2N电极对I3-的还原反应表现出与Pt电极相似的催化活性。但Mo2N和W2N电极具有较大的扩散阻抗, 因此所组装DSCs光电转换效率(Mo2N:6.38%, W2N:5.81%)小于Pt对电极电池效率(7.01%)。综合上述结果可以看出, 对电极同时具备较高的催化活性和较低的扩散阻抗对于改善DSCs光电性能非常重要。

3 过渡金属氧化物、碳化物对电极

由于具有一些特殊的物理、化学性质及较好的催化性能和稳定性, 过渡金属氧化物和碳化物代替Pt制备DSCs对电极也引起人们的关注。Wu等[ 50]将SnO2涂到FTO导电玻璃表面, 然后在氮气气氛下对电极进行热处理制备SnO2电极。以SnO2电极作为对电极, DSCs的光电效率达到6.09%。Ma所在的课题组[ 51, 52, 53]通过简单的化学合成制备了TaO、Ta2O5、WO2、WO3、H-Nb2O5(六方晶系)、O-Nb2O5(正交晶系)、M-Nb2O5(单斜晶系)及NbO2(四方晶系), 然后分别将上述8种氧化物沉积到FTO导电玻璃表面, 并经过热处理(N2气氛)制备DSCs对电极。从表1 中数据可以看出, NbO2对电极性能最好, 组装电池的光电转换效率达到7.88%, 高于相应Pt对电极电池的效率(7.65%)。从 Rct(电荷迁跃电阻)数据看, 虽然TaO、WO2及M-Nb2O5三种电极催化活性与Pt电极相近, 但是这三种电极电池的光电转换效率都比Pt电极电池低。主要原因是这三种电极的扩散阻抗都明显大于Pt电极, 因此组装的DSCs的短路电流密度和填充因子都小于相应Pt对电极电池。

表1 过渡金属氧化物对电极特性及组装染料敏化太阳能电池光电参数 Table 1 Characteristics of electrodes based on transition metal oxide and photovoltaic parameters of dye-sensitized solar cells with different counter electrodes

WC、W2C和MoC是目前报道的三种制备DSCs对电极的过渡金属碳化物[ 54, 55, 56]。商业化生产的WC和MoC有效催化面积和电导性都较低, 因此所制备的对电极催化性能较差[ 54]。Jang等[ 55]采用聚合物诱导水热法(PD)和微波辅助水热法(MW)合成了PD-WC和MW-WC, 其BET表面积分别达到64 和73 m2/g。以这两种碳化物制备对电极, 电池的光电效率分别达到6.61% (PD-WC)和7.01% (MW-WC), 但与Pt电极电池效率(8.31%)相比还偏低。

综上所述, 过渡金属化合物对电极在DSCs中表现出与Pt对电极相似的催化性能。但对于不同的过渡金属化合物对电极, 由于不同研究人员采用的实验条件(如电解质、光阳极等)不同, 因此不能简单的通过文献报道的光电数据比较它们的性能好坏。DSCs对电极上的催化反应发生在催化剂表面, 催化剂表面的电子、能态及几何结构等因素对其催化活性有决定性影响。氮、氧、硫等原子与过渡金属原子结合, 进入过渡金属晶界空隙生成过渡金属化合物。这些外来原子(氮、氧、硫等)与过渡金属原子间的电子迁移改变了过渡金属的电子结构和能级状态, 使过渡金属化合物具有一些特殊的物理、化学性质, 从而表现出与Pt相似的催化性能[ 57, 58]。但是目前还没有关于过渡金属化合物对电极在DSCs催化机理的详细报道。掌握过渡金属化合物对电极的催化机理, 对于进一步改善其催化性能至关重要。因此深入研究过渡金属化合物对电极的催化机理是下一步研究的主要内容之一。另一方面, 虽然目前过渡金属化合物对电极的催化机理尚不清楚, 但是文献结果表明通过提高过渡金属化合物的比表面积和电导性能, 降低其扩散阻抗, 可以有效提高过渡金属化合物对电极的催化性能, 从而提高DSCs的光电效率。

4 过渡金属化合物/碳材料复合对电极

将过渡金属化合物分散沉积到碳材料载体上, 一方面可以提高过渡金属化合物的分散性和有效表面积, 另一方面又能充分利用碳材料优良的电导性能, 实现两种材料性能上的优势互补。因此过渡金属化合物与碳材料复合是提高过渡金属化合物对电极性能的一条有效途径。目前报道的碳材料载体主要包括石墨烯、多壁碳纳米管和介孔碳。

石墨烯是一种由单层碳原子组成的二维材料, 具有优异的导电和导热能力、高的比表面积、较好的机械强度和较高的透光性, 因此在微电子和光电子装置、能量转换与储存及催化等领域备受关注[ 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69]。近年来, 将石墨烯与过渡金属化合物复合制备DSCs对电极引起了广泛关注。Duo等[ 70]采用水热合成法将Ni2P5纳米粒子沉积到石墨烯片上制备了Ni2P5/石墨烯复合对电极。复合对电极的催化性能明显优于单组份电极, 所组装DSCs的光电效率达到5.70%, 比Ni2P5单组份电极效率提高了45%。Das等[ 71]通过化学气相沉积结合离子吸附反应制备了CoS/石墨烯复合电极。以CoS/石墨烯电极为对电极, DSCs的光电转换效率达到3.42%, 几乎达到单纯石墨烯电极的三倍。Yue等[ 72]通过球磨将MoS和石墨烯混合制备MoS/石墨烯复合电极。以这种机械混合MoS/石墨烯电极作为对电极, DSCs的光电转换效率达到5.98%。Liu等[ 73]用H2在650 ℃下还原氧化石墨烯与四硫代钼酸铵混合物, 使MoS纳米颗粒均匀地沉积在被还原的氧化石墨烯片上, 从而大大提高了MoS的有效面积, 用MoS/石墨烯复合电极组装的DSCs光电转换效率达到6.04%, 比单纯MoS电极电池效率提高26%。

多壁碳纳米管(MWCNT)具有较高的比表面积、优异的电导能力和机械强度、较好的稳定性, 因此被广泛应用于催化剂的载体[ 74, 75]。另外, MWCNT本身对I3-的还原反应也表现出很高的催化活性[ 76, 77, 78, 79, 80, 81]。将过渡金属化合物沉积到MWCNT上制备复合对电极, 可以通过MWCNT和过渡金属化合物的优势互补, 实现催化性能的协同效应。Tai等[ 82]将MoS2沉积到MWCNT上制备MoS2/MWCNT复合电极(图4(a))。由于MWCNT形成的导电网络和高度分散的MoS2纳米粒子的协同效应, MoS2/MWCNT复合电极对I3-还原反应的催化活性明显高于单组份MoS2电极。以MoS2/MWCNT电极作为对电极, DSCs的光电转换效率达到6.45%, 比MoS2对电极电池效率提高28%。Song等[ 83]以羟基功能化的MWCNT和钼酸铵为原料制备了MoN/MWCNT复合电极(图4(b))。MoN分散结合在MWCNT表面形成的多孔结构改善了电解质中离子的扩散以及MoN和MWCNT间的电子传递。以MoN/MWCNT电极作为对电极, DSCs的效率达到6.74%, 远高于MoN电极电池的效率(5.57%)。Li等[ 84]通过TiOSO4在MWCNT表面分解后进行氨气氮化制备了TiN/MWCNT复合电极(图4(c))。以TiN/MWCNT复合电极为对电极, DSCs的光电转换效率达到5.41%, 远高于单组份TiN和MWCNT电极电池的效率(分别为2.12%和3.13%)。Yue等[ 85]采用水热法制备的WS2/MWCNT复合电极(图4(d))同时具有较高的比表面积和较好的电导特性。WS2/MWCNT电极对I3-的还原反应表现出与Pt电极相同的催化活性。所组装DSCs的光电转换效率达到6.41%, 明显高于单纯WS2电极电池的效率(4.79%)。Lin[ 86]和Xiao[ 87]等分别采用循环伏安电沉积和脉冲电沉积技术使CoS均匀分布在MWCNT表面(图4(e)和4(f)))。这同时增加了CoS的有效催化面积和MWCNT与导电基底的结合力, 改善了电极的催化性能。所组装的DSCs光电转换效率(8.01%)明显高于相应的Pt电极 (6.39%)和单组份CoS电极电池效率(7.38%)。

图4 MoS2/MWCNT[ 82](a)和TiN/MWCNT[ 84](c)的TEM照片; MoN/MWCNT[ 83](b)、WS2/MWCNT[ 85] (d)、循环伏安电沉积CoS/MWCNT[ 86](e)及脉冲电沉积CoS/MWCNT[ 87](f)的SEM照片Fig. 4 TEM images of MoS2/MWCNT[ 82] (a) and TiN/MWCNT[ 84] (c); SEM images of MoN/MWCNT[ 83] (b),WS2/MWCNT[ 85](d), CoS/MWCNT[ 86, 87]CV electrodeposition (e) and Pulse electrodeposition (f)

介孔碳(MC)具有较大的比表面积、较好的稳定性、较高的孔隙率和电导性能, 因此介孔碳在催化剂载体、储氢材料和电极材料等方面得到广泛应用[ 88, 89, 90]。与碳纳米管相似, MC对I3-的还原反应同样表现出很高的催化活性[ 91, 92, 93, 94, 95]。因此, 将MC与过渡金属化合物复合所制备的对电极将同时具有高比表面积和孔隙率、较好的电导性、稳定性和催化活性, 从而实现MC与过渡金属化合物催化性能的协同效应。Ma等[ 96, 97, 98, 99]所在的课题组将MoC、WC、WO2、Ni4P5及VC分别沉积到MC表面, 制备了MoC/MC、WC/MC、WO2/MC、Ni4P5/MC及VC/MC复合电极。表2中数据表明, 过渡金属化合物/MC复合对电极的性能明显优于单一组份电极。与单组份过渡金属化合物电极相比, 用复合对电极组装的DSCs光电转换效率得到显著提高。这表明将表面积和孔隙率高、电导性能好的MC与催化活性高的过渡金属化物结合制备复合对电极是一种有效的提高对电极性能的方法。

表2 MoC/MC、WC/MC、WO2/MC、Ni4P5/MC及VC/MC对电极催化性能及组装的染料敏化太阳能电池光电性能 Table 2 The catalytic activity of MoC/MC, WC/MC, WO2/MC, Ni4P5/MC and VC/MC electrodes and the photovoltaic parameters of dye-sensitized solar cells with different counter electrode

在上述三类过渡金属化合物/碳材料复合电极中, 过渡金属化合物分散在石墨烯、碳纳米管和介孔碳的表面。碳材料作为载体增加过渡金属化合物催化剂的分散性, 从而提高了其有效催化面积。同时, 载体间的空隙有利于电解质中氧化还原对的扩散, 从而降低了扩散阻抗。另外, 碳材料与过渡金属

化合物紧密结合提供了外电路电子在对电极内快速传输的通道。因此, 复合电极实现了碳材料载体与过渡金属化合物催化剂的优势互补。

5 总结

过渡金属化合物种类较多、制备简单、价格低而且催化活性高, 可以代替昂贵的Pt制备高性能染料敏化太阳能电池对电极。但到现在为止, 还没有关于过渡金属化合物对电极催化过程及机理的详细研究报道。因此, 应加强过渡金属化合物对电极催化性能的影响因素及其催化机理的研究。

将过渡金属化合物与碳材料结合, 一方面利用碳材料高的比表面积提高过渡金属化合物的分散性, 从而提高其有效表面积; 另一方面可以将过渡金属化合物的高催化活性与碳材料的高电导性结合起来, 实现两种材料的优势互补。因此, 这是一条制备高性能染料敏化太阳能电池对电极的有效途径。

对过渡金属化合物对电极的研究目前主要集中在其催化性能及组装电池的光电性能上, 关于对电极的稳定性研究还偏少。在将来的研究中应加强过渡金属化合物对电极稳定性, 特别是在某些特定情况下(如较高的温度、存在少量氧气或水)稳定性的研究。

参考文献
[1] O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740. [本文引用:1] [JCR: 38.597]
[2] Nazerruddin M K, Kay A, Rodicio I, et al. Conversion of TiO2 by Cis-x2Bis(2, 2´-bipyridine-4, 4´-dicarboxylate) ruthenium (II) charge-transfer sensitized on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. , 1993, 115(14): 6382-6390. [本文引用:1] [JCR: 10.677]
[3] Hagfeldt A, Gräetzel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. , 1995, 95(1): 49-68. [本文引用:1] [JCR: 41.298]
[4] Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338-344. [本文引用:1] [JCR: 38.597]
[5] Grätzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A: Chem. , 2004, 164(1/2/3): 3-14. [本文引用:1]
[6] Yanagida S, Yu Y, Manseki K. Iodine/iodide-free dye-sensitized solar cells. Acc. Chem. Res. , 2009, 42(11): 1827-1838. [本文引用:1] [JCR: 20.833]
[7] Hagfeldt A, Boschloo G, Sun L, et al. Dye-sensitized solar cells. Chem. Rev. , 2010, 110(11): 6595-6663. [本文引用:1] [JCR: 41.298]
[8] Vougioukalakis G, Philippopoulos A, Stergiopoulos T. Contributions to the development of ruthenium-based sensitizer for dye-sensitized solar cells. Coord. Chem. Rev. , 2011, 255(21): 2602-2621. [本文引用:1] [JCR: 11.016]
[9] Yella A, Lee H, Tsao H, et al. Porphyrin-sensitized solar cell with cobalt (II/III) based redox electrolyte exceed 12% efficiency. Science, 2011, 334(6056): 629-634. [本文引用:1]
[10] Papageorgiou N, Maier W F, Grätzel M. An iodine/triiodide reduction electrocatalyst for aqueous and organic media. J. Electrochem. Soc. , 1997, 114(3): 876-884. [本文引用:1] [JCR: 2.588]
[11] Papageorgiou N. Counter-electrode function in nanocrystalline photoelectrochemical cells configurations. Coord. Chem. Rev. , 2004, 248(13): 1421-1446. [本文引用:1] [JCR: 11.016]
[12] Wang G, Lin R, Lin Y, et al. A novel high-performance counter electrode for dye-sensitized solar cell. Electrochim. Acta, 2005, 50(28): 5546-5552. [本文引用:1] [JCR: 3.777]
[13] Calogero G, Caland ra P, Irrera A, et al. A new transparent and low-cost counter electrode based on Pt nanoparticles for dye-sensitized solar cells. Energy Environ. Sci. , 2011, 4(5): 1838-1844. [本文引用:1] [JCR: 11.653]
[14] Sun K, Fan B, Ouyang J. Nanostructured films deposited by polyol reduction of a platinum precursor and their application as counter electrode of dye-sensitized solar cells. J. Phys. Chem. C, 2010, 114(9): 4237-4244. [本文引用:1] [JCR: 4.814]
[15] Kay A, Grätzel M. Low cost photovoltaic modules base on dye-sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells, 1996, 44(1): 99-117. [本文引用:1]
[16] Murakami T N, Ito S, Wang Q, et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrode. J. Electrochem. Soc. , 2006, 153(12): A2255-A2261. [本文引用:1] [JCR: 2.588]
[17] Joshi P, Zhang L, Chen Q, et al. Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interface, 2010, 2(12): 3572-3577. [本文引用:1] [JCR: 5.008]
[18] Wu M, Lin X, Wang T, et al. Low-cost dye-sensitized solar cells based on nine kinds of carbon counter electrode. Energy Environ. Sci. , 2011, 4(6): 2308-2315. [本文引用:1] [JCR: 11.653]
[19] Cha S, Koo B, Lee D. Pt-free transparent counter electrode for dye-sensitized solar cells prepared from carbon nanotube micro-balls. J. Mater. Chem. , 2010, 20(4): 656-662. [本文引用:1] [JCR: 5.968]
[20] Zhao B, Huang H, Jiang P, et al. Flexible counter electrode based on mesoporous carbon aerogel for high-efficiency dye-sensitized solar cells. J. Phys. Chem. C, 2011, 115(45): 22615-22621. [本文引用:1] [JCR: 4.814]
[21] Wang H, Hu Y. Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. , 2012, 5(8): 8182-8188. [本文引用:1] [JCR: 11.653]
[22] Trancik J, Barton S, Hone J. Transparent and catalytic carbon nanotube films. Nano Lett. , 2008, 8(4): 982-987. [本文引用:1] [JCR: 13.025]
[23] Li K, Luo Y, Yu Z, et al. Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells. Electrochem. Commun. , 2009, 11(7): 1346-1349. [本文引用:1] [JCR: 4.425]
[24] Jiang Q, Li G, Gao X. Highly ordered mesoporous carbon array from natural wood materials as counter electrode of dye-sensitized solar cells. Electrochem. Commun. , 2010, 12(7): 924-927. [本文引用:1] [JCR: 4.425]
[25] Xiao J, Chen L, Yanagida S. Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. J. Mater. Chem. , 2011, 21(12): 4644-4649. [本文引用:1] [JCR: 5.968]
[26] Bu C, Tai Q, Guo S. A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell. J. Power Source, 2013, 221(1): 78-83. [本文引用:1] [JCR: 4.675]
[27] Sakurai S, Jiang H, Takahashi M. Enhanced performance of a dye-sensitized solar cell with a modified poly(3, 4-ehtylenedioxy- thiophene)/TiO2/FTO counter electrode. Electrochim. Acta, 2009, 54(23): 5463-5469. [本文引用:1] [JCR: 3.777]
[28] Wu L, Li Q, Fan L, et al. High-performance polypyrrole nanoparticles counter electrode for a dye-sensitized solar cells. J. Power Source, 2008, 181(1): 172-176. [本文引用:1] [JCR: 4.675]
[29] Sun H, Luo Y, Zhang Y, et al. In situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells. J. Phys. Chem. C, 2010, 114(26): 11673-11679. [本文引用:1] [JCR: 4.814]
[30] Tai Q, Chen B, Guo F, et al. In situ prepared transparent ployaniline electrode and its application in bifacial dye-sensitized solar cell. ACS Nano, 2011, 5(5): 3795-3799. [本文引用:1] [JCR: 12.062]
[31] Hong W, Xu Y, Shi G, et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes for dye-sensitized solar cells. Electrochem. Commun. , 2008, 10(10): 1555-1558. [本文引用:1] [JCR: 4.425]
[32] Zhang J, Hreid T, Li X, et al. Nanostructured polyaniline counter electrode for dye-sensitized solar cells: fabrication and investigation of its electrochemical formation mechanism. Electrochim. Acta, 2010, 55(11): 3664-3668. [本文引用:1] [JCR: 3.777]
[33] Chen J, Li B, Zheng J, et al. Polyaniline/carbon film as flexible counter electrode in Pt-free dye-sensitized solar cells. Electrochim. Acta, 2011, 56(12): 4624-4630. [本文引用:1] [JCR: 3.777]
[34] Wu M, Ma T. Pt-free catalysts as counter electrodes in dye-sensitized solar cells. ChemSusChem, 2012, 5(8): 1343-1357. [本文引用:1]
[35] Wang M, Anghel A, Marsan B, et al. CoS supersedes Pt as an efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. , 2009, 131(44): 15976-15977. [本文引用:1] [JCR: 10.677]
[36] Lin J, Liao J, Chou S. Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells. Electrochim. Acta, 2011, 56(24): 8818-8826. [本文引用:1] [JCR: 3.777]
[37] Lin J, Liao J. Mesoporous electrodeposited CoS film as a counter electrode in dye-sensitized solar cells. J. Electrochem. Soc. , 2012, 159(2): D65-D71. [本文引用:1] [JCR: 2.588]
[38] Lin J, Liao J, Wei T. Honeycomb-like CoS counter electrodes for transparent dye-sensitized solar cells. Electrochem. Solid-State Lett. , 2011, 14(4): D41-D44. [本文引用:1]
[39] Kung C, Chen H, Lin C, et al. CoS Acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cells. ACS Nano, 2012, 6(8): 7016-7025. [本文引用:1] [JCR: 12.062]
[40] Chi W, Han J, Yang S, et al. Empolying electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrode. Chem. Commun. , 2012, 48(76): 9501-9503. [本文引用:1] [JCR: 6.378]
[41] Sun H, Qin D, Huang S, et al. Dye-sensitized solar cells with NiS counter electrode electrodeposited by a potential reverse technique. Energy Environ. Sci. , 2011, 4(8): 2630-2637. [本文引用:1] [JCR: 11.653]
[42] Ku Z, Li X, Liu G, et al. Transparent NiS counter electrodes for thiolate/disulfide mediated dye-sensitized solar cells. J. Mater. Chem. A, 2013, 1(2): 237-240. [本文引用:1]
[43] Zhao W, Lin T, Sun S, et al. Oriented single-crystalline NiS nanorod arrays “two-in-one” counter electrode for dye-sensitized solar cells. J. Mater. Chem. A, 2013, 1(2): 194-198. [本文引用:1]
[44] Wu M, Wang Y, Lin X, et al. Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys. , 2011, 13(43): 19298-19301. [本文引用:1] [JCR: 3.829]
[45] Jiang Q, Li J, Gao X. Highly ordered TiN nanotube arrays as counter electrode of dye-sensitized solar cells. Chem. Commun. , 2009, 45(44): 6720-6722. [本文引用:1] [JCR: 6.378]
[46] Zhang X, Chen X, Dong S, et al. Hierarchical micro/nano structured titanium nitride spheres as high performance counter electrode for a dye-sensitized solar cell. J. Mater. Chem. , 2012, 22(1): 6067-6071. [本文引用:1] [JCR: 5.968]
[47] Jiang Q, Li G, Liu S, et al. Surface-nitrided nickel with bifunctional structure as low-cost counter electrode for dye-sensitized solar cells. J. Phys. Chem. C, 2010, 114(31): 13397-13401. [本文引用:1] [JCR: 4.814]
[48] Li G, Song J, Pan G, et al. Highly Pt-like electrocatalytic activity of transition metal nitride foe dye-sensitized solar cells. Energy Environ. Sci. , 2011, 4(5): 1680-1683. [本文引用:1] [JCR: 11.653]
[49] Wu M, Zhang Q, Xiao J, et al. Two flexible counter electrode based on molybdenum and tungsten nitrides for dye-sensitized solar cells. J. Mater. Chem. , 2011, 21(29): 10761-10766. [本文引用:1] [JCR: 5.968]
[50] Wu M, Lin X, Guo W, et al. Great improvement of catalytic activity of the oxide counter electrode fabricating in N2 atmosphere for dye-sensitized solar cells. Chem. Commun. , 2013, 49(11): 1058-1060. [本文引用:1] [JCR: 6.378]
[51] Yun S, Wang L, Guo W, et al. Non-Pt counter electrode catalysts using tantalum oxide for low-cost dye-sensitized solar cells. Electrochem. Commun. , 2012, 24(1): 69-73. [本文引用:1] [JCR: 4.425]
[52] Wu M, Lin X, Hagfeldt A, et al. A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells. Chem. Commun. , 2011, 47(15): 4535-4537. [本文引用:1] [JCR: 6.378]
[53] Lin X, Wu M, Wang Y, et al. Novel counter electrode catalyst of niobium oxide supersede Pt for dye-sensitized solar cells. Chem. Commun. , 2011, 47(41): 11489-11491. [本文引用:1] [JCR: 6.378]
[54] Wu M, Lin X, Hagfeldt A, et al. Low cost molybdenum carbide and tungsten carbide counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed. , 2011, 50(15): 3520-3524. [本文引用:2]
[55] Jang J, Ham D, Ramasamy E, et al. Platinum-free tungsten carbide as effective counter electrode for dye-sensitized solar cells. Chem. Commun. , 2010, 46(45): 8600-8602. [本文引用:2] [JCR: 6.378]
[56] Ko A, Oh J, Lee Y, et al. Characterizations of tungsten carbide as non-Pt counter electrode in dye-sensitized solar cells. Mater. Lett. , 2011, 65(14): 2220-2223. [本文引用:1] [JCR: 2.224]
[57] Krawiec P, De Colar P L, Glaser R, et al. Oxide foams for the synthesis of high-surface-area vanadium nitride catalysts. Adv. Mater. , 2006, 18(4): 505-508. [本文引用:1] [JCR: 14.829]
[58] Bennett L H, Cuthill J R, McAlister A J, et al. Electronic and catalytic properties of tungsten carbide. Science, 1975, 187(4179): 858-859. [本文引用:1]
[59] Sun Y, Wu Q, Shi G. Graphene based now energy materials. Energy Environ. Sci. , 2011, 4(4): 1113-1132. [本文引用:1] [JCR: 11.653]
[60] Pang S, Hernand ez Y, Feng X, et al. Graphene as transparent electrode materials of organic electronics. Adv. Mater. , 2011, 23(25): 2779-2795. [本文引用:1] [JCR: 14.829]
[61] Jiang L, Lu X. Graphene application in solar cells. J. Inorganic Mater. , 2012: 27(11): 1129-1137. [本文引用:1]
[62] Kavan L, Yum J, Grätzel M, et al. Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano, 2011, 5(1): 165-172. [本文引用:1] [JCR: 12.062]
[63] Kavan L, Yum J, Grätzel M, et al. Graphene nanoplatelets cathode for Co(III)/II mediated dye-sensitized solar cells. ACS Nano, 2011, 5(11): 9171-9178. [本文引用:1] [JCR: 12.062]
[64] Jang S, Kim Y, Kim D, et al. Electrodynamically sprayed thin film of aqueous dispersible graphene nanosheets: highly efficient cathode for dye-sensitized solar cells. ACS Appl. Mater. Interface. 2012, 4(7): 3500-3507. [本文引用:1] [JCR: 5.008]
[65] Choi H, Kim H, Hwang S, et al. Graphene counter electrode for dye-sensitized solar cells by electrophoretic deposition. J. Mater. Chem. , 2011, 21(21): 7548-7551. [本文引用:1] [JCR: 5.968]
[66] Roy-Mayhew J D, Bozym D J, Punckt C, et al. Functionalized graphene as catalytic counter electrode in dye-sensitized solar cells. ACS Nano, 2010, 4(10): 6203-6211. [本文引用:1] [JCR: 12.062]
[67] Zhang H, Neo C, Mei X, et al. Reduced oxide graphene film fabricated by gel coating and its application as Pt-free counter electrode of highly efficient iodide/triodide dye-sensitized solar cells. J. Mater. Chem. , 2012, 22(29): 14465-14474. [本文引用:1] [JCR: 5.968]
[68] Xu Y, Bai H, Li G, et al. Flexible graphene film via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. , 2008, 130(18): 5856-5857. [本文引用:1] [JCR: 10.677]
[69] Zhang D, Li X, Li H, et al. Graphene based counter electrode for dye-sensitized solar cells. Carbon, 2011, 49(15): 5382-5388. [本文引用:1] [JCR: 5.868]
[70] Duo Y, Li G, Song J, et al. Nickel phosphide-embedded graphene as counter electrode of dye-sensitized solar cells. Phys. Chem. Chem. Phys. , 2012, 14(4): 1339-1342. [本文引用:1] [JCR: 3.829]
[71] Das S, Sudhagar P, Nagarajan S, et al. Synthesis of graphene-CoS electrocatalytic electrodes for dye-sensitized solar cells. Carbon, 2012, 50(13): 4815-4821. [本文引用:1] [JCR: 5.868]
[72] Yue G, Lin J, Tai S, et al. A catalytic composite film MoS2/graphene flakes as a counter electrode for Pt-free dye-sensitized solar cells. Electrochim. Acta, 2012, 85(1): 162-168. [本文引用:1] [JCR: 3.777]
[73] Liu C, Tai S, Chou S, et al. Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. J. Mater. Chem. , 2012, 22(39): 21057-21064. [本文引用:1] [JCR: 5.968]
[74] Umeyama T, Imahori H. Carbon nanotube-modified electrodes for solar energy conversion. Energy Environ. Sci. , 2008, 1(1): 120-133. [本文引用:1] [JCR: 11.653]
[75] Ahmad K, Pan W. Dramatic effect of multiwalled carbon nanotube on the electrical properties of alumina ceramic nanocomposites. Compos. Sci. Technol. , 2009, 69(7/8): 1016-1021. [本文引用:1] [JCR: 3.328]
[76] Lee W, Ramasamy E, Lee D, et al. Efficient dye-sensitized solar cell with catalytic multiwalled carbon nanotube counter electrode. ACS Appl. Mater. Interface, 2009, 1(6): 1145-1149. [本文引用:1] [JCR: 5.008]
[77] Seo S, Kim S, Koo B, et al. Influence of electrolyte composition on the photovoltaic performance and stability of dye-sensitized solar cell with multiwalled carbon nanotube catalyst. Langmuir, 2010, 26(12): 10341-10346. [本文引用:1] [JCR: 4.187]
[78] Cho H, Kim H, Hwang S, et al. Dye-sensitized solar cells using graphene-based carbon nanocomposite as counter electrode. Sol. Energy Mater. Sol. Cell, 2011, 95(1): 323-325. [本文引用:1]
[79] Trancik J, Barton S, Hone J. Transparent and catalytic carbon nanotube films. Nano Lett. , 2008, 8(4): 982-987. [本文引用:1] [JCR: 13.025]
[80] Ramasamy E, Lee W, Lee D, et al. Spray coated multi-walled carbon nanotube counter electrode for triiodide reduction in dye-sensitized solar cells. Electrochem. Commun. , 2008, 10(7): 1087-1089. [本文引用:1] [JCR: 4.425]
[81] Suzuki K, Yamaguchi M, Kumagai M, et al. Application carbon nanotubes to counter electrode of dye-sensitized solar cells. Chem. Lett. , 2003, 32(1): 28-29. [本文引用:1] [JCR: 1.594]
[82] Tai S, Liu C, Chou S, et al. Few-layer MoS2 nanosheets coated on multiwalled carbon nanotubes as low-cost highly electrocatalytic counter electrode for dye-sensitized solar cells. J. Mater. Chem. , 2012, 22(47): 24753-24759. [本文引用:1] [JCR: 5.968]
[83] Song J, Li G, Xiong F, et al. Synergistic effect of molybdenum nitride and carbon nanotube on electrocatalysis for dye-sensitized solar cells. J. Mater. Chem. , 2012, 22(38): 20580-20585. [本文引用:1] [JCR: 5.968]
[84] Li J, Wang F, Jiang Q, et al. Carbon nanotube with titanium nitride as a low-cost counter electrode materials for dye-sensitized solar cells. Angew. Chem. Int. Ed. , 2010, 49(21): 3653-3656. [本文引用:1]
[85] Yue G, Wu J, Lin J, et al. A counter electrode of multiwalled carbon nanotube decorated with tungsten sulfide used in dye-sensitized solar cells. Carbon, 2013, 55(1): 1-9. [本文引用:1] [JCR: 5.868]
[86] Lin J, Liao J, Hung T. A composite counter electrode of CoS/MWCNT with highly electrocatalytic activity for dye-sensitized solar cells. Electrochem. Commun. , 2011, 13(9): 977-980. [本文引用:1] [JCR: 4.425]
[87] Xiao Y, Wu J, Lin J, et al. Pulse electrodeposition of CoS on the MWCNT/Ti as a high performance counter electrode for the Pt-free dye-sensitized solar cells. J. Mater. Chem. A, 2013, 1(4): 1289-1295. [本文引用:1]
[88] Ryoo R, Joo S, Kruk M, et al. Ordered mesoporous carbon. Adv. Mater. , 2001, 13(9): 677-681. [本文引用:1] [JCR: 14.829]
[89] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv. Mater. , 2006, 18(16): 2073-2094. [本文引用:1] [JCR: 14.829]
[90] Cand elaria S, Shao Y, Zhou W, et al. Nanostrucutred carbon for energy storage and conversion. Nano Energy, 2012, 1(2): 195-220. [本文引用:1]
[91] Ramasamy E, Chun J, Lee J. Soft-template synthesized ordered mesoporous carbon counter electrode for dye-sensitized solar cells. Carbon, 2010, 48(15): 4563-4565. [本文引用:1] [JCR: 5.868]
[92] Fang B, Fan S, Kim J, et al. Incorporation hierarchical nanostructured carbon counter electrode into metal-free organic dye-sensitized solar cell. Langmuir, 2010, 26(13): 11238-11243. [本文引用:1] [JCR: 4.187]
[93] Wang G, Xing W, Zhuo S. Application of mesoporous carbon to counter electrode for dye-sensitized solar cells. J. Power Source, 2009, 194(1): 568-573. [本文引用:1] [JCR: 4.675]
[94] Ramasamy E, Lee J. Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells. Chem. Commun. , 2010, 46(12): 2136-2138. [本文引用:1] [JCR: 6.378]
[95] Srinivasu P, Islam A, Singh S O, et al. Highly efficient nanoporous graphitic carbon with tunable texture properties for dye-sensitized solar cells. J. Mater. Chem. , 2012, 22(39): 20866-20869. [本文引用:1] [JCR: 5.968]
[96] Wu M, Bai J, Wang Y, et al. Highly efficient phosphide/carbon counter electrode for both iodide and organic redox couples in dye-sensitized solar cells. J. Mater. Chem. , 2012, 22(22): 11121-11127. [本文引用:1] [JCR: 5.968]
[97] Wu M, Lin X, Hagfeldt A, et al. Low-cost Molybdenum carbide and tungsten carbide counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed. , 2011, 50(13): 3520-3524. [本文引用:1]
[98] Wu M, Lin X, Wang L, et al. In-situ synthesized economical tungsten oxide imbedded in mesoporous carbon for dye-sensitized solar cells as counter electrode catalyst. J. Phys. Chem. C, 2011, 115(45): 22598-22602. [本文引用:1] [JCR: 4.814]
[99] Wu M, Lin X, Wang Y, et al. Economical Pt-free catalysts for counter electrode of dye-sensitized solar cells. J. Am. Chem. Soc. , 2012, 134(7): 3419-3428. [本文引用:1] [JCR: 10.677]