Mn改性Na0.5Bi2.5Nb2O9高温压电陶瓷的研究
江向平, 温佳鑫, 陈超, 涂娜, 李小红
景德镇陶瓷学院 材料工程系, 江西省先进陶瓷材料重点实验室, 景德镇333001

江向平(1964-), 男, 教授. E-mail:jiangxp64@163.com

摘要

采用固相法获得了Mn改性的Na0.5Bi2.5Nb2O9(NBN+xmol%MnCO3, 0≤x≤10.0)铋层状压电陶瓷, 并系统地研究了Mn(掺杂)对NBN基陶瓷显微结构与电性能的影响. 结果表明, 所有获得的样品都是居里点在700℃以上的单一相铁电体. 加入Mn显著地提高了NBN系列陶瓷的机械品质因素Qm, 明显改善了陶瓷的压电与机电性能. 当MnCO3掺杂量为8.0mol%时, 陶瓷获得最佳电性能: tanδ=0.749%,d33=20 pC/N,Qm=3120,kp=12.37%,kt=21.09%,Pr=7.01 µC/cm2. NBN+xmol% MnCO3(x=8.0)陶瓷经700℃退极化处理后, 其d33保持为原来的75%(~15 pC/N), 表明该材料在高温领域下具有良好的应用前景.

关键词: 压电陶瓷; 微观结构; 机电性能; 铁电性能; Na0.5Bi2.5Nb2O9
中图分类号:TQ174   文献标志码:A    文章编号:1000-324X(2012)08-0827-06
Piezoelectric Properties of Mn-modified Na0.5Bi2.5Nb2O9 for High Temperature Applications
JIANG Xiang-Ping, WEN Jia-Xin, CHEN-Chao, TU-Na, LI Xiao-Hong
Jiangxi Key Laboratory of Advanced Ceramic Materials, Department of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
Abstract

Bismuth layer-structured ferroelectric ceramics Na0.5Bi2.5Nb2O9(NBN+xmol% MnCO3, 0≤x≤10.0) were synthesized by traditional solid state reaction. The effects of Mn addition on the microstructure and electrical properties of ceramics were investigated in detail. The results showed that all the ceramic samples were single-phase ferroelectrics with high Curie points (Tc≥700℃). With the addition of MnCO3, the mechanical quality factor, piezoelectric activity and electromechanical properties of Na0.5Bi2.5Nb2O9-based ceramics are enhanced significantly. Besides, the NBN+8.0mol% MnCO3 ceramic exhibits the optimum electrical properties: tanδ=0.749%,d33=20 pC/N,Qm=3120,kp=12.37%,kt=21.09%,Pr=7.01 µC/cm2. After annealing at 700℃, thed33 value of NBN+8.0mol% MnCO3 ceramic remains 75%(~15 pC/N), which indicates that this ceramic is a promising material for high temperature applications.

Keyword: piezoelectric ceramics; microstructure; electromechanical properties; ferroelectric properties; Na0.5Bi2.5Nb2O9

自1949年Aurivillius发现铋层状结构化合物以来, 其有趣的结构特性及高居里温度引起了人们的广泛关注. 铋层状(BLSFs)材料具有高居里温度、机电耦合系数, 较好的抗疲劳等特性, 适合做压力传感器、滤波器等[ 1, 2, 3, 4, 5, 6]. Bi4Ti3O12、Bi3NbTiO9、Na0.5Bi4.5Ti4O15、CaBi2Nb2O9、Na0.5Bi2.5Nb2O9和CaBi4Ti4O15等BLSFs材料已经被广泛研究[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

Na0.5Bi2.5Nb2O9(NBN)是一种典型的高温( Tc~780℃)BLSFs材料[ 12]. 但是, 由于其对称性低、自发极化只能在a-b平面内二维转动, 使它难以获得足够大的剩余极化强度 Pr, 限制了其在器件方面的使用. Mn作为一种常见的添加剂, 具有多种价态(+2,+3,+4), 经常用于钙钛矿与铋层状压电陶瓷的掺杂改性研究[ 6, 13, 14, 15, 16, 17, 18, 19].

为了改善NBN的电性能, Gai等[ 20]通过(Li,Ce)掺杂使陶瓷的 d33(pc/N)从17提高到27; Jiang等[ 21]通过LiNbO3改性使陶瓷的 d33(pc/N)从10提高到21. 然而对于Mn掺杂NBN陶瓷却鲜有报道, 本工作通过固相法制备Na0.5Bi2.5Nb2O9+ xmol%MnCO3(NBN-Mn)压电陶瓷, 并研究Mn掺杂对NBN陶瓷的物相、显微结构和电性能的影响.

1 实验部分

采用传统固相法制备了Na0.5Bi2.5NbO9+ xmol% MnCO3(NBN-Mn, x=0、1.0、3.0、5.0、7.0、8.0、9.0、10.0)陶瓷. 以Bi2O3(99.0%)、Nb2O5(99.5%)、Na2CO3 (99.8%)和MnCO3(98.0%)为反应原料, 按相应的化学计量比称料. 配制的原料经混合、预烧(770℃, 2 h)、粉碎﹑细磨﹑造粒﹑压片(~18 MPa)﹑排胶﹑烧结(1080℃ 4 h). 烧成品烧制银电极, 置于160℃的硅油中, 以8.0~9.5 kV/mm电场极化30 min, 放置24 h 后测其各项电性能.

采用扫描电子探针显微镜(SEM, Model JSM- 6700F, Japan)和XRD(D8 Advance, Bruker axs)分析样品的表面形貌和物相结构. 压电常数 d33利用ZJ-3A 型准静态 d33 测量仪测出. 用精密阻抗分析仪(Agilent-4294A)在100 kHz下测定其介温曲线. 平面机电耦合系数( kp)﹑厚度机电耦合系数( k t)和机械品质因数( Qm)也是用精密阻抗分析仪(Agilent 4294A)通过谐振和反谐振法测量. 利用Sawyer-T- ower电桥法获得样品的电滞回线.

2 结果与讨论
2.1 微结构分析

图1是NBN-Mn陶瓷样品的XRD图谱, 可以看出, 在所有NBN-Mn陶瓷中最强峰是(115), 与铋层状结构陶瓷最强峰(112 m+1)一致[ 22, 23]. 当 x≤1.0时, 只有NBN相出现; 随着Mn含量增加到3.0, BiMnO3的(111)和BiNbO4的(032)衍射峰出现. 从 图1(b)可以看出, 在 x≤3.0时, (115)峰朝小角度偏移; 当3.0≤ x≤8.0时, 向大角度方向偏移, 当 x≥9.0时, 其又开始向小角度偏移, 表明其晶面间距先增大后变小又再增大[ 24].

图1 NBN-Mn粉末样品的XRD图谱Fig. 1 XRD patterns of the NBN-Mn samples in the range of 2 θ (a) from 20° to 50° and (b) from 28.5° to 30°

图2是样品的晶胞参数与体积随 x的变化关系, 可以看出, 随着Mn含量增加到3.0, c V随之减小. 而当Mn的量继续增加时, c V逐渐增大. 而 a b的差值在Mn量 x从0到5时越来越大, 继续增加 Mn的掺杂量, 其差值逐渐减小. 由于Mn3+(0.0645 nm)与B位的Nb5+(0.064 nm)相差较小, 而与A 位的Bi3+(0.120 nm)和Na+(0.118 nm)的半径相差较大, 因此这种晶格的扭曲可能是由Mn取代B位的Nb引起的[ 25]. 适度的扭曲会促进其极化性能, 但是添加过量Mn后, Mn将聚集在晶界, 抑制电畴的反转[ 13, 26], 并且引入过量Mn伴随着第二相BiMnO3(111)和BiNbO4(032)的生成,使其介电损耗增大并导致性能的退化.

图2 样品晶胞参数随 x的变化关系Fig. 2 Lattice parameters of the samples as a function of x

图3为NBN-Mn陶瓷热腐蚀表面的SEM照片,由图可见, 所有陶瓷的结构紧密. 随着Mn的引入, 晶粒尺寸显著增大, 说明添加Mn能促进陶瓷晶粒的生长. 类似的现象在Na0.5Bi2.5Ta2O9、Na0.5Bi4.5Ti4O15、Pb (Zr, Ti) O3、BiScO3-PbTiO3和 (Ca,Sr)Bi4Ti4O15陶瓷也出现过[ 17, 18, 19, 27]. 当 x≤1.0时, NBN-Mn陶瓷具有典型的层状结构, 这与(Li, Ce)掺杂NBN和LiNbO3改性的NBN陶瓷的结构相类似[ 20, 21, 24]. 当 x≥3.0时, 随着引入Mn量的增加, 其晶粒逐渐长大, 晶粒形状由条状逐渐变为盘状, 在La掺杂CaBi2Nb2O9也有类似现象[ 28].

图3 NBN-Mn陶瓷抛光热腐蚀表面的SEM照片Fig. 3 SEM images for polished and thermally etched surfaces of NBN-Mn ceramics(a) x=0; (b) x=1.0; (c) x=3.0; (d) x=8.0

表1列出了NBN系列陶瓷的机电性能. 随着引入NBN的Mn( x≥0)的增加, Qm先增加后减小, 在 x=8.0时达到最大值3120; 其 d33也表现出相似的变化趋势, 在 x=8.0时 d33达到20 pC/N, 相较于纯的NBN提高了一倍. 此外, 由表1还可看出Mn掺杂对NBN机电性能影响的变化趋势. 样品( x=8.0)的 kp k t分别为12.37%和21.09%, 其中 kp远小于 k t表现出明显的各向异性. 综上所述, 加入Mn明显改善了NBN系列陶瓷的电性能.

表1 Mn掺杂NBN陶瓷电性能随掺杂量 x的变化关系 Table 1 Electrical properties of Mn-doped NBN ceramics as a function of x

图4(a)是Mn掺杂NBN陶瓷的介电常数(εr)在100 kHz下测得的随温度的变化关系曲线, 由图4可知所有NBN陶瓷的居里点都在700℃以上. 如表1可知随着掺杂Mn量的增加, 该陶瓷在200~700℃范围内, 介电常数随着Mn的增加而增大.

图4 NBN-Mn陶瓷的介电常数( εr) (a)和介电损耗(tan δ) (b)与温度的变化关系Fig. 4 Temperature dependence of the dielectric constant εr (a) and loss tangent tan δ (b) for the NBN-Mn ceramics

图4(b)是给出了Mn掺杂NBN陶瓷的介电损耗(tan δ)在100 kHz下与温度的关系曲线. 随着Mn的引入, 其损耗稍微增大, 同时NBN陶瓷在200℃时出现了一个反常峰, 且随着Mn的含量增加, 反常峰越来越明显, 这可能是由于过量的Mn与挥发的Bi2O3形成了BiMnO3而产生了相变[ 29].

图5是在80 kV/cm下, NBN-Mn陶瓷样品的 P-E电滞回线. 随着Mn的引入, 电滞回线逐渐变得饱和. 当 x由1.0增加到8.0时, 其剩余极化值显著提高(尤其是3.0~8.0), 从3.54增加至7.01 μC/cm2, 为纯NBN的2倍, 这可能归因于掺杂引起的适度晶格畸变易使样品的 Pr变大[ 30]. 但与 Pr相比较, 其矫顽场 Ec增幅较小, 从27.35增加到35.32. 由此可知, 可以引入Mn改善其铁电性能, 提高极化率, 从而显著地提高NBN-Mn的压电性能.

图5 NBN-Mn陶瓷的电滞回线Fig. 5 P- E hysteresis loops of the NBN-Mn ceramics

图6是NBN系列陶瓷的 d33随退火温度变化的曲线图, 如图可知, 随着Mn的引入, 陶瓷 d33先增大后减小, 其高温的稳定性得到很好地改善. 纯NBN陶瓷的 d33在退火温度超过400℃后开始急剧下降, 700℃退火后, d33仅为原来的40%(~4 pC/N). 掺8.0mol%Mn的样品的 d33随退火温度的升高表现较为平稳, 到700℃退火后 d33仍大于室温的75%, 说明其在高温领域有应用前景. 该现象在NBN-LiNbO3[ 21]中也有类似的报道.

图6 NBN-Mn 陶瓷的 d33 随退火温度变化曲线Fig. 6 Influence of annealing temperature on d33of the NBN-Mn ceramics

图7显示 x=8.0时, 样品 kp k t d33 Qm随温度的变化关系曲线. 室温时, kp为12.37%, 温度升高到600℃时仍接近6%. k t在室温时为一较高值(21.09%), 继续升高温度至700℃时, 其值仍大于12%. d33随温度升高变化较小, 在温度升高至700℃时仍保持在70%以上. 室温下 Qm为3120, 比(Li, Ce)掺杂NBN(2600)[ 20]的高, 稍低于NBN单晶(3800)[ 12]. 随着温度升高, Qm呈直线下降趋势. 由上可知, Na0.5Bi2.5Nb2O9+ 8.0mol%Mn材料在高温表现出良好的稳定性.

图7 NBN-Mn( x=8.0)陶瓷的 kp kt d33 Qm随温度的变化Fig. 7 kp, kt, d33 and Qm for the NBN-Mn ceramic x=8.00) as a function of temperature

3 结论

1) 所有样品均具有单一的正交铋层状结构, 其最强峰(115)在 x≤3.0时, 朝小角度偏移; 当3.0≤ x≤8.0时, 向大角度方向偏移, 当 x≥9.0时, 其又开始向小角度偏移.

2) 掺杂Mn能显著地提高其剩余极化强度, 特别是 x从3.0到8.0时, 其 Pr从3.54提高到 7.01 μC/cm2; 同时Mn的引入可以促进陶瓷的极化, 导致其电性能显著升高, 且在最佳性能点 x=8.0时, 其 d33 Qm分别为20 pC/N(为纯的NBN陶瓷的一倍)和3120(与纯的NBN陶瓷相比提高了一倍多).

3) 随着引入Mn的量的增加( x≥3.0), 介电温谱在200℃出现了一个BiMnO3反常峰.

4)引入Mn没有大幅度降低 T c(且都在700℃以上), 并且随着Mn的引入, 其热稳定性得到显著地提高.

参考文献
[1] YAN Hai-Xue, LI Cheng-En, ZHOU Jia-Guang, et al. Structures and properties of bismuth layer-structured piezoelectric ceramics with high Tc. Journal of Inorganic Materials, 2000, 15(2): 209-220. [本文引用:2] [JCR: 0.531] [CJCR: 1.106]
[2] 范素华, 张丰庆, 胡广达, . 烧结温度对CaBi4Ti4O15陶瓷电性能的影响. 人工晶体学报, 2007, 36(2): 396-399. [本文引用:2]
[3] Wang C M, Zhang S J, Wang J F, et al. Electromechanical properties of calcium bismuth niobate (CaBi2Nb2O9) ceramics at elevated temperature. Materials Chemistry and Physics, 2009, 118(1): 21-24. [本文引用:2] [JCR: 2.072]
[4] Wang C M, Wang J F, Zheng L M, et al. Enhancement of the piezoelectric properties of sodium lanthanum bismuth titanate (Na0. 5La0. 5Bi4Ti4O15) through modification with cobalt. Materials Science and Engineering B, 2010, 171(1/2/3): 79-85. [本文引用:2] [JCR: 1.846]
[5] Gai Z G, Wang J F, Sun W B, et al. Ultrahigh temperature Bi3Ti0. 96Sc0. 02Ta0. 02NbO9-based piezoelectric ceramics. Journal of Applied Physics, 2008, 104(2): 4106-4109. [本文引用:2] [JCR: 2.21]
[6] GU Da-Guo, LI Guo-Rong, ZHENG Liao-Ying, et al. Electrical properties of Mn-modified CaBi4Ti4O15 piezoelectrics for high temperature application. Journal of Inorganic Materials, 2008, 23(3): 626-630. [本文引用:3] [JCR: 0.531] [CJCR: 1.106]
[7] ZHANG Li-Na, LI Guo-Rong, ZHAO Su-Chuan, et al. Electrical behavior of Nb-doped Bi4Ti3O12 layer-structured ferroelectric ceramics. Journal of Inorganic Materials, 2005, 20(6): 1389-1395. [本文引用:1] [JCR: 0.531] [CJCR: 1.106]
[8] JIANG Xiang-Ping, YANG Qing, CHEN Chao, et al. Nb-modified Bi4Ti3O12 piezoelectric for high temperature applications. Journal of Inorganic Materials, 2010, 25(11): 1169-1174. [本文引用:1] [JCR: 0.531] [CJCR: 1.106]
[9] Nagata H, Matsuzawa S, Tokutsu T, et al Temperature dependence of piezoelectric properties on Nd and V co-substituted Bi4Ti3O12 ceramics for ceramic resonator applications. Ceramics International, 2009, 35(1): 163-167. [本文引用:1] [JCR: 1.789]
[10] Yokoi A, Masumoto H, Sugishita J. Phase transition-crystal structure relations in ferroelectric Bi2. 5Na1. 5Nb3O12 compound by molecular dynamics simulation. Materials Chemistry and Physics, 2009, 116(1): 16-20. [本文引用:1] [JCR: 2.072]
[11] Huang X Y, Chen Z G, Zhen X L, et al. Dielectric and piezoelectric Properties of Ca1-x(Li, Ce)x/2Bi4Ti4O15 ceramics. Journal of Rare Metals. Spl. , 2007, 25(1): 158-162. [本文引用:1]
[12] Aoyagi Rintaro, Takeda Hiroaki, Okamura Soichiro, et al. Synthesis and electrical properties of sodium bismuth niobate Na0. 5Bi2. 5Nb2O9. Materials Research Bulletin, 2003, 38(1): 25-32. [本文引用:3] [JCR: 1.913]
[13] Hou Y D, Zhu M K, Gao F, et al. Piezoelectric properties of new MnO2-added 0. 2 PZN–0. 8 PZT ceramic. J. Am. Ceram. Soc. , 2004, 87(5): 847-850. [本文引用:2] [JCR: 2.107]
[14] Nagata H, Takenaka T J. Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics. Euro. Ceram. Soc. , 2001, 21(10/11): 1299-1302. [本文引用:1]
[15] Zhang S J, Eitel R E, Rand all C A, et al. Manganese-modified BiScO3–PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor. Appl. Phys. Lett. , 2005, 86(26): 62904. [本文引用:1] [JCR: 3.794]
[16] Szwagierczak D, Kulawik J J. Influence of MnO2 and Co3O4 dopants on dielectric properties of Pb(Fe2/3W1/3)O3 ceramics. Euro. Ceram. Soc. , 2005, 25(9): 1657-1662. [本文引用:1]
[17] Matsushita Mitsuhiro, Aoyagi Rintaro, Takeda Hiroaki, et al. Piezoelectric properties of sodium bismuth tantalate Na0. 5Bi2. 5- Ta2O9 dense ceramics. Japanese Journal of Applied Physics, 2004, 43(10): 7164-7168. [本文引用:2] [JCR: 1.067]
[18] Gao Daojiang, Kwok K W, Lin Dunmin. Microstructure, piezoelectric and ferroelectric properties of Mn-added Na0. 5Bi4. 5Ti4O15 ceramics. Current Applied Physic, 2011, 11(3): 124-127. [本文引用:2] [JCR: 1.814]
[19] Kano J,  Yin Q R,   Kojima S,   et al. Vibrational and dielectric properties of MnO2-doped bismuth layered-structure ferroelectrics . Applications of Ferroelectrics, 2007, 16: 478-480. [本文引用:2]
[20] Gai Zhi-Gang, Wang Jin-Feng, Zhao Ming-Lei, et al. High temperature (NaBi)0. 480. 04Bi2Nb2O9-based piezoelectric ceramics. Appl. Phys. Lett. , 2006, 89(20): 012907-1-3. [本文引用:3] [JCR: 3.794]
[21] Jiang Xiang-Ping, Yang Qing, Chen Chao, et al Microstructure and properties of high-temperature materials (1-x)Na0. 5Bi2. 5Nb2O9- xLiNbO3. J. Am. Ceram. Soc. , 2010, 493: 276-280. [本文引用:3] [JCR: 2.107]
[22] Wang C M, Wang J F, Zhang S J, et al. Electromechanical properties of A-site (Li Ce) modified sodium bismuth titanate (Na0. 5Bi4. 5Ti4O15) piezoelectric ceramics at elevated temperature. J. Appl. Phys. , 2009, 105(9): 094110-1-5. [本文引用:1] [JCR: 0.71]
[23] Wang C. M. , Wang J. F. High performance aurivillius phase sodium- potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification. Appl. Phys. Lett. , 2006, 89(20): 202905-1-3. [本文引用:1] [JCR: 3.794]
[24] Gai Zhi-Gang, Feng Yuan-Yuan, Wang Jin-Feng, et al. The effect of (Li, Ce) doping in Aurivillius phase material (Na0. 52K0. 42Li0. 06)0. 5Bi2. 5(Nb1. 88Sb0. 06Ta0. 06)O9. Phys. Status Solidi A, 2010, 207(8): 1792-1795. [本文引用:2] [JCR: 1.463]
[25] Chaker Chiheb, Abdelmoulaa Najmeddine, Gagoub Yaovi, et al. Study of the Na1-xBixNb1-xMnxO3 ceramics by X-ray diffraction, dielectric and Raman spectroscopy. Solid State Communications, 2011, 151(10): 763-767. [本文引用:1] [JCR: 1.534]
[26] 杜红亮, 杜红娜, 周万城, (DU Hong-Liang, et al). 锰掺杂对PNW-PMS-PZT压电陶瓷结构和性能的影响. 硅酸盐学报(Journal of the Chinese Ceramic Society), 2005, 33(6): 777-779. [本文引用:1] [CJCR: 0.969]
[27] Li G R, Zheng L Y, Yin Q R. Microstructure, domain morphology and piezoelectric properties of Si-doped Pb(Mn1/3Sb2/3)O3- Pb(Zr, Ti)O3 systems. J. Appl. Phys. , 2005, 119(1): 46-50. [本文引用:1] [JCR: 0.71]
[28] Zhang Xiaodong, Yan Haixue, Michael J. Reece. Effect of A site substitution on the properties of CaBi2Nb2O9 ferroelectric ceramics. J. Am. Ceram. Soc. , 2008, 91(9): 2928-2932. [本文引用:1] [JCR: 2.107]
[29] Santos A M, Parashar S, Raju A R, et al. Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Communications, 2002, 122(1/2): 49-52. [本文引用:1] [JCR: 1.534]
[30] Chen Q, Xu Z J, Chu R Q, et al. Ferroelectric and dielectric properties of Sr2-x(Na, K)xBi4Ti5O18. lead-free piezoelectric ceramics. Physica B: Condensed Matter, 2010, 405(13): 2781-2784. [本文引用:1] [JCR: 1.327]