[1] |
FUJISHIMA A, HONDA K.Electrochemical photolysis of water at a semiconductor electrode.Nature, 1972, 238: 37-38.
|
[2] |
KUDO A, MISEKI Y.Heterogeneous photocatalyst materials for water splitting.Chem. Soc. Rev., 2009, 38(1): 253-278.
|
[3] |
CHEN XIAO-BO, SHEN SHAO-HUA, GUO LIE-JIN,et al. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev., 2010, 110(11): 6503.
|
[4] |
YU SHAN, ZHONG YUN-QIAN, YU BAO-QUAN,et al. Graphene quantum dots to enhance the photocatalytic hydrogen evolution efficiency of anatase TiO2 with exposed {001} facet. Physical Chemistry Chemical Physics, 2016, 18(30): 20338-20344.
|
[5] |
YANG MIN, JIA XIAO-PENG, LI BING-KE D,et al. One-pot synthesis and photocatalytic hydrogen evolution properties of Zn2GeO4 microspheres. Journal of Inorganic Materials, 2017, 32(2): 141-147.
|
[6] |
GUO DONG-XUE, ZHANG QING-HONG, WANG HONG-ZHI,et al. Preparation of RuO2/ZrO2/TaON composite photocatalyst and Its photocatalytic properties for water splitting hydrogen evolution. Journal of Inorganic Materials, 2015, 30(10): 1025-1030.
|
[7] |
WEI JIE, LI XUE-DONG, WANG HONG-ZHI,et al Nitrogen doped carbon quantum dots/titanium dioxide composites for hydrogen evolution under sunlight.Journal of Inorganic Materials, 2015, 30(9): 925-930.
|
[8] |
WANG FANG, WEI SHI-QIAN, ZHANG ZHI,et al. Oxygen vacancies as active sites for H2S dissociation on the rutile TiO2110) surface: a first-principles study.Physical Chemistry Chemical Physics, 2016, 18(9): 6706-6712.
|
[9] |
KAWADE U V, PANMAND R P, SETHI Y A,et al. Environmentally benign enhanced hydrogen production via lethal H2S under natural sunlight using hierarchical nanostructured bismuth sulfide. RSC Adv., 2014, 4(90): 49295-49302.
|
[10] |
NAMAN S A, ALIWI S M, AL-EMARA K.Hydrogen production from the splitting of H2S by visible light irradiation of vanadium sulfides dispersion loaded with RuO2.Int. J. Hydrogen Energy, 1986, 11(1): 33-38.
|
[11] |
Hydrogen Sulfide: Human Health Aspects; Concise International Chemical Assessment Document 53; World Health Organization:Geneva. Document 53; World Health Organization: Geneva. 2003.
|
[12] |
PIÉPLU A, SAUR O, LAVALLEY J C,et al. Claus catalysis and H2S selective oxidation. Cat. Rev., 1998, 40(4): 409-450.
|
[13] |
PATIL S S, PATIL D R, APTE S K,et al. Confinement of Ag3PO4 nanoparticles supported by surface plasmon resonance of Ag in glass: efficient nanoscale photocatalyst for solar H2 production from waste H2S. Appl. Catal., B, 2016, 190: 75-84.
|
[14] |
KAWADE U V, PANMAND R P, SETHI Y A,et al. Environmentally benign enhanced hydrogen production via lethal H2S under natural sunlight using hierarchical nanostructured bismuth sulfide. RSC Adv., 2014, 4(90): 49295-49302.
|
[15] |
JANG J S, KIM H G, BORSE P H,et al. Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation. Int. J. Hydrogen Energy, 2007, 32(18): 4786-4791.
|
[16] |
GOEDE O, HEIMBRODT W.Optical properties of (Zn, Mn) and (Cd, Mn) chalcogenide mixed crystals and superlattices.Phys. Status Solidi B, 1988, 146(1): 11-62.
|
[17] |
FAN DONG-BO, WANG HAO, ZHANG YONG-CAI,et al Preparation of crystalline MnS thin films by chemical bath deposition.Mater. Chem. Phys., 2003, 80(1): 44-47.
|
[18] |
LOKHANDE C D, ENNAOUI A, PATIL P S, et al. Process and characterisation of chemical bath deposited manganese sulphide (MnS) thin films. Thin Solid Films, 1998, 330(2): 70-75.
|
[19] |
GÜMÜŞ C, ULUTAŞ C, ESEN R,et al Preparation and characterization of crystalline MnS thin films by chemical bath deposition.Thin Solid Films, 2005, 492(1): 1-5.
|
[20] |
MI LI-WEI, CHEN YUAN-FANG, ZHENG ZHI,et al. Benefical metal ion insertion into dondelion-like MnS with enhanced catalytic performance and genetic morphology. RSC Adv., 2014, 4(37): 19257-19265.
|
[21] |
DAN MENG, ZHANG QIAN, YU SHAN, et al. Noble-metal-free MnS//n2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S. Appl. Catal., B, 2017(2017): 530-539.
|
[22] |
ZHANG LEI, ZHOU LIANG, WU HAN-BIN,et al. Unusual formation of single-crystal manganese sulfide microboxes Co-mediated by the cubic crystal structure and shape. Angew. Chem. Int. Ed., 2017, 51(29): 7267-7270.
|
[23] |
TANG YONG-FU, CHEN TENG, GUO WEN-FENG,et al.Reduced graphene oxide supported MnS nanotubes hybrid as a novel non-precious metal electrocatalyst for oxygen reduction reaction with high performance. J. Power Sources, 2017, 362: 1-9.
|
[24] |
SOMBUTHAWEE C, BONSALL S B, HUMMEL F A.Phase equilibria in the systems ZnS-MnS, ZnS-CuInS2, and MnS-CuInS2.J. Solid State Chem., 1978, 25(4): 391-399.
|
[25] |
SKROMME B J, ZHANG Y, SMITH D J, et al. Growth and characterization of pseudomorphic single crystal zinc blende MnS. Appl. Phys. Lett., 1995, 67(18): 2690-2692.
|
[26] |
BISWAS S, KAR S, CHAUDHURI S.Growth of different morphological features of micro and nanocrystalline manganese sulfide via solvothermal process. J. Cryst. Growth, 2007, 299(1): 94-102.
|
[27] |
LIU MEI-YING, SHAN NAN-NAN, CHEN LINLIN,et al A mild l-cystine-assisted hydrothermal route to metastable γ-MnS multipods.Appl. Surf. Sci., 2012, 258(20): 7922-7927.
|
[28] |
ZHANG YONG-CAI, WANG HAO, WANG BO, et al.Low- temperature hydrothermal synthesis of pure metastable γ-manganese sulfide (MnS) crystallites.J. Cryst. Growth, 2002, 243(1): 214-217.
|
[29] |
ZHANG, YONG-CAI, WANG HAO, WANG BO,et al Hydrothermal synthesis of metastable γ-manganese sulfide crystallites.Opt. Mater., 2003, 23(1): 433-437.
|
[30] |
WANG ZHONG-LIN.Transmission electron microscopy of shape- controlled nanocrystals and their assemblies.J. Phys. Chem.: B, 2000, 104(6): 1153-1175.
|
[31] |
LI YUE-XIANG, HU YUAN-FANG, PENG SHAO-QIN,et al Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution.The Journal of Physical Chemistry C, 2009, 113(21): 9352-9358.
|
[32] |
CAO HUA-QIANG, WANG GUO-ZHI, ZHANG SI-CHUN, et al. Growth and optical properties of wurtzite-type CdS nanocrystals. Inorg. Chem., 2006, 45(13): 5103-5108.
|
[33] |
PANDEY G, SHARMA H K, SRIVASTAVA S K,et al γ-MnS nano and micro architectures: synthesis, characterization and optical properties.Mater. Res. Bull., 2011, 46(11): 1804-1810.
|
[34] |
KASAHARA A, NUKUMIZU K, HITOKI G,et al. Photoreactions on LaTiO2N under visible light irradiation. J. Phys. Chem. A, 2002, 106(29): 6750-6753.
|
[35] |
吴晓东, 孙晓君, 魏金枝, 等. MnS光催化剂的制备及其产氢性能. 哈尔滨理工大学学报, 2013, 18(3): 102-105.
|
[36] |
XIE YI-BING.Photoelectrochemical reactivity of a hybrid electrode composed of polyoxophosphotungstate encapsulated in titania nanotubes.Adv. Funct. Mater., 2006, 16(14): 1823-1831.
|
[37] |
HAGFELDT A, LINDSTRÖM H, SÖDERGREN S,et al.Photoelectrochemical studies of colloidal TiO2 films: the effect of oxygen studied by photocurrent transients. J. Electroanal. Chem., 1995, 381(1-2): 39-46.
|
[38] |
曹锡章, 宋天佑, 王杏乔. 无机化学(上册). 北京:高等教育出版社, 1994, 383(1): 3.
|
[39] |
LI RENG-GUI, ZHANG FU-XIANG, WANG DON-GE,et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun., 2013, 4: 1432.
|
[40] |
WANG XIANG, LI REN-GUI, XU QIAN,et al. Roles of (001) and (101) facets of anatase TiO2 in photocatalytic reactions. Acta Physico-Chimica Sinica, 2013, 29(7): 1566-1571.
|