[1] Lines M, Glass A. Principles and Applications of Ferroelectrics and Related Materials. Oxford: clarendon Press, 1977.
[2] Fatuzzo E, Merz W J. Ferroelectricity. Amsterdam: North-Holland, 1967.
[3] Mitsui T, Tatsuzaki I, Nakamura E. Introduction to the Physics of Ferroelectricity. London: Gordon and Breaeh, 1976.
[4] Kobeko P, KurtschatovJ. Dielectric properties of Rochelle salt crystal. Z. Physik, 1930, 66: 192–205.
[5] Wiseman G G, Huebler D A. Electrocaloric effect in ferroelectric rochelle salt. Phys. Rev., 1963, 131(5): 2023–2027.
[6] Benepe J W, Reese W. Electronic studies of KH2PO4. Phys. Rev. B, 1971, 3(9): 3032–3039.
[7] Lawless W N. Specific heat and electrocaloric properties of KTaO3 at low temperatures. Phys. Rev. B, 1977, 16(1): 433–439.
[8] Hegenbarth E. Studies of the electrocaloric effect of ferroelectric ceramics at low temperatures. Cryogenics, 1961, 1(4): 242–250.
[9] Lawless W N. Recent topics in ferroelectric properties at low temperatures. Ferroelectrics, 1980, 24(1): 327–335.
[10] Strukov B A. Electrocaloric effect in single-crystal triglycine sulfate. Sov. Phys. Crystallogr., 1967, 11: 757.
[11] Pecharsky V K, Gschneidner Jr KA. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett., 1997, 78(23): 4494–4497.
[12] Morellon L, Magen C, Algarabel P A, et al. Magnetocaloric effect in Tb5(SixGe1-x)4. Appl. Phys. Lett., 2001, 79(9): 1318–1320.
[13] Wada H, Tanabe Y. Giant magnetocaloric effect of MnAs1-xSbx. Appl. Phys. Lett., 2001, 79(20): 3302–3304.
[14] Hu F X, Shen B G, Sun J R, et al. Influence of negative lattice expansion on magnetic entropy change in the compounds LaFe11.4Si1.6. Appl. Phys. Lett., 2001, 78(23): 3675–3677.
[15] Fujita A, Fujieda S, Hasegawa Y, et al. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides. Phys. Rev. B, 2003, 67(10): 104416–1–12.
[16] Tegus O, Brück E, Buschow K H J, et al. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature, 2002, 415(6868): 150–152.
[17] Albertini F, Canepa F, Cirafici S, et al. Composition dependence of magnetic and magnetothermal properties of Ni-Mn-Ga shape memory alloys. J. Magn. Magn. Mater., 2004, 272–276: 2111– 2112.
[18] Pecharsky V K, Gschneidner Jr K A, Pecharsky A O, et al. Thermodynamics of the magnetocaloric effect. Phys. Rev. B, 2001, 64(14): 144406–1–10.
[19] Amin A, Cross L E, Newnham R E. Calorimetric and phenomenological studies of the PbZrO3-PbTiO3 system. Ferroelectrics, 1981, 37(1–4): 647–650.
[20] Amin A, Newnham R E, Cross L E. Phenomenological and structural study of a low-temperature phase-transition in the PbZrO3- PbTiO3 system. J. Solid State Chem., 1981, 37(2): 248–255.
[21] Furukawa T. Phenomenological aspect of a ferroelectric vinylidene fluoride / trifluoroethylene copolymer. Ferroelectrics, 1984, 57 (1–4): 63–72.
[22] Furukawa T, Nakajima T, Takahashi Y. Factors governing ferroelectric switching characteristics of thin VDF/TrFE copolymer films. IEEE Trans. Diel. Ele. Ins., 2006, 13(5): 1120–1131.
[23] Neese B, Chu B J, Lu S G, et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, 321(5890): 821–823.
[24] Tuttle B A, Payne D A. The effect of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 ceramics. Ferroelectrics, 1981, 37(1–4): 603–606.
[25] Moya X, Stern-Taulats E, Crossley S, et al. Giant electrocaloric strength in single-crystal BaTiO3. Adv. Mater. 2013, 25(9): 1360– 1365.
[26] Gerson R, Marshall T C. Dielectric breakdown of porous ceramics. J. Appl. Phys., 1959, 30(11): 1650–1653.
[27] Mischenko A S, Zhang Q, Scott J F, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 2006, 311(5765): 1270– 1271.
[28] Correia T M, Young J S, Whatmore R W, et al. Investigation of the electrocaloric effect in a PbMg1/3Nb2/3O3-PbTiO3 relaxor thin film. Appl. Phys. Lett., 2009, 95(18): 182904–1–3.
[29] Akcay G, Alpay S P, Mantese J V, et al. Magnitude of the intrinsic electrocaloric effect in ferroelectric perovskite thin films at high electric fields. Appl. Phys. Lett., 2007, 90(25): 252909–1–3.
[30] Lu S G, Ro?i?B, Zhang Q M, et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl. Phys. Lett., 2010, 97(16): 162904–1–3.
[31] Dinesen A R, Linderoth S, M?rop S. Direct and indirect measurement of the magnetocaloric effect in a La0.6Ca0.4MnO3 ceramic perovskite. J. Magn. Magn. Mater., 2002, 253(1/2): 28–34.
[32] Gopal B R, Chahine R, Bose T K. A sample translatory type insert for automated magnetocaloric effect measurements. Rev. Sci. Instrum., 1997, 68(4): 1818–1822.
[33] Tocado L, Palacios E, Burriel R. Direct measurement of the magnetocaloric effect in Tb5Si2Ge2. J. Magn. Magn. Mater., 2005, 290– 291(Part 1): 719–722.
[34] Yao H, Ema K, Garland C W. Nonadiabatic scanning calorimeter. Rev. Sci. Instrum., 1998, 69(1): 172–178.
[35] Lu S G, Ro?i? B, Zhang Q M, et al. Enhanced electrocaloric effect in ferroelectric poly (vinylidene-fluoride/trifluoroethylene) 55/45 mol% copolymer at ferroelectric-paraelectric transition. Appl. Phys. Lett., 2011, 98(12): 122906–1–3.
[36] Li X Y, Qian X S, Gu H M, et al. Giant electrocaloric effect in ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Appl. Phys. Lett., 2012, 101(13): 132903–1–3.
[37] 干福熹主编. 信息材料-二十一世纪新材料丛书. 天津: 天津大学出版社, 2000.
[38] Karayan S, Mathur N D. Direct and indirect electrocaloric measurements using multilayer capacitors. J. Phys., D: Appl. Phys., 2010, 43(3): 032002–1–5.
[39] Bai Y, Zheng G P, Ding K, et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film. J. Appl. Phys., 2011, 110(9): 094103–1–3.
[40] Defay E, Crossley S, Kar-Narayan S, et al. The electrocaloric efficiency of ceramic and polymer films. Adv. Mater. 2013, 25(24): 3337–3342.
[41] Sinyavsky Y V, Brodyansky V. Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectrics, 1992, 131(1–4): 321–325.
[42] Gu H M, Qian X S, Li X Y, et al. A chip scale electrocaloric effect based cooling device. Appl. Phys. Lett., 2013, 102(12): 122904–1–4. |