[1] Zhang G R, Dong X L, Liu Z K, et al. Cobalt-site cerium doped SmxSr1?xCoO3?δ oxides as potential cathode materials for solid-oxide fuel cells. Journal of Power Sources, 2010, 195(11): 3386–3393.[2] Jiang S P. A comparison of O2 reduction reactions on porous (La, Sr)MnO3 and (La, Sr)(Co, Fe)O3 electrodes. Solid State Ionics, 2002, 146: 1–22.[3] Liu B W, Zhang Y, Zhang L M. Oxygen reduction mechanism at Ba0.5Sr0.5Co0.8Fe0.2O3?δ cathode for solid oxide fuel cell. International Journal of Hydrogen Energy, 2009, 34(2): 1008–1014.[4] Lee K T, Manthiram A. Comparison of Ln0.6Sr0.4CoO3-δ (Ln= La, Pr, Nd, Sm and Gd) cathode materials for intermediate temperature solid oxide fuel cells. Journal of the Electrochemcal Society, 2006, 153: A794–A798.[5] Huang S G, Peng C Q, Zong Z. A high-performance Gd0.8Sr0.2CoO3-Ce0.9Gd0.1O1.95 composite cathode for intermediate temperature solid oxide fuel cell. Journal of Power Sources, 2008, 176(1): 102–106.[6] Chen J, Liang F L, Chi B, et al. Palladium and ceria infiltrated La0.8Sr0.2Co0.5Fe0.5O3?δ cathodes of solid oxide fuel cells. Journal of Power Sources, 2009, 194(1): 275–280.[7] Chen J, Liang F L, Liu L N, et al. Nano-structured (La, Sr)(Co,Fe)O3+YSZ composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2008, 183(2): 586–589.[8] Song S A, Jang S C, Han J, et al. Enhancement of cell performance using a gadolinium strontium cobaltite coated cathode in molten carbonate fuel cells. Journal of Power Sources, 2011, 196(23): 9900–9905.[9] Wang Ya-Nan, Zhou He-Ping. Preparation and characterization of Gd1-xSrxCoO3-δ and Gd0.8Sr0.2Co1-yFeyO3-δ. Chinese Journal of Inorganic Chemistry, 2008, 24(10): 1558–1563.[10] Jin Hong-Jian, Wang Huan, Zhang Hua, et al. Synthesis and characterization of GdBaCo2O5+δ cathode material by glycine-nitrate process. Journal of Inorganic Materials, 2012, 27(7): 751–756.[11] Jadhav L D, Chourashiya M G, Subhedar K M, et al. Synthesis of nanocrystalline Gd doped ceria by combustion technique. Journal of Alloys and Compounds, 2009, 470(1/2): 383–386.[12] Purohit R D, Sharma B P, Pillai K T, et al. Ultrafine ceria powders via glycine–nitrate combustion. Materials Research Bulletin, 2001, 36: 2711–2721. [13] Schafer J, Sigmund W, Roy S, Aldinger F. Low temperature synthesis of ultrafine Pb(Zr, Ti)O3 powder by sol gel combustion. Journal of Materials Research, 1997, 12: 2518–2521.[14] Jain S R, Adiga K C, Verneker V R P. A new approach to thermochemical calculations of condensed fuel-oxidizer mixture. Combust and Flame, 1981, 40(1): 71–79.[15] Shao Z P, Zhou W, Zhu Z H. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Progress in Materials Science, 2012, 57(4): 804–874.[16] Purohit R D, Sharma B P, Pillai K T, et al. Ultrafine ceria powders via glycine–nitrate combustion. Materials Research Bulletin, 2001, 36: 2711–2721.[17] John A D. Lange's Handbook of Chemistry. fifteenth ed. London: McGraw-Hill, 1999: 554–569.[18] Huang Shou-Guo, Peng Chun-Qiu, Xia Chang-Rong. Fabrication of Gd0.8Sr0.2CoO3-Sm0.2Ce0.8O1.9 cathodes for intermediate temperature solid oxide fuel cell. Journal of Functional Materials, 2006, 1(37): 92–94.[19] Cullity B D. Elements of X-RAY Diffraction. Massachusetts: Ddison-Wesley Publishing Company, Inc., 1956: 110. |