Journal of Inorganic Materials ›› 2012, Vol. 27 ›› Issue (5): 555-560.DOI: 10.3724/SP.J.1077.2012.11691-1
• Orginal Article • Previous Articles
XU Bin1, ZHAO Chao-Yong1, CAI Bing2, FAN Hong-Song1
Received:
2011-11-10
Published:
2012-05-10
Online:
2012-03-31
About author:
XU Bin(1987-), male, candidate of master degree. E-mail: xubin1987.happy@163.com
Supported by:
CLC Number:
XU Bin, ZHAO Chao-Yong, CAI Bing, FAN Hong-Song. Porous Titanium Treated by Nitric Acid with Varied Concentration and the Bioactivity in Vitro[J]. Journal of Inorganic Materials, 2012, 27(5): 555-560.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jim.org.cn/EN/10.3724/SP.J.1077.2012.11691-1
Fig. 3 FESEM photographs of porous titanium subjected to different concentrations of HNO3 aqueous solution treatment after immersion in SBF for 1 d (a, b) no treatment, (c, d) after the etching of mixed acid V(65wt% HNO3):V(H2O)=(e, f) 1: 0 (g, h) 1:1; (i, j) 1:5 and (k, l) 1:10
Fig. 4 XRD patterns of porous titanium subjected to HNO3 aqueous solution treatment after immersion in SBF V(65wt% HNO3):V(H2O) =(a) 1:0; (b) 1:1; (c) 1:5 and (d) 1:10
Fig. 7 CLSM micrographs showing the morphology of MG63s cultured on the different porous titanium surface (a, d) no treatment (b, e) V(65wt% HNO3):V(H2O)=1:1 (c, f) V(65wt% HNO3):V(H2O)=1:5 nitric treating
[1] | Li Jia Ping, Habibovic Pamela, van den Doel Mirella, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, 2007, 28(18): 2810-2820. |
[2] | Yu Zhengtao, Zhou Lian, Luo Lijuan, et al. Investigation on mechanical compatibility matching for biomedical titanium alloys. Key Engineering Materials, 2005, 288-289: 595-598. |
[3] | Nishiguchi Shigeru, Nakamura Takashi, Kobayashi Masahiko, et al. The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials, 1999, 20(5): 491-500. |
[4] | Liu Xuanyong, Chu Paul K, Ding Chuanxian. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 2004, 47(3/4): 49-121. |
[5] | Lu Xiong, Zhao Zhanfeng, Leng Yang. Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Materials Science and Engineering: C, 2007, 27(4): 700-708. |
[6] | Zhao C Y, Zhu X D, Yuan T, et al. Fabrication of biomimetic apatite coating on porous titanium and their osteointegration in femurs of dogs. Materials Science and Engineering: C, 2010, 30(1): 98-104. |
[7] | Kokubo Tadashi, Takadama Hiroaki. How useful is SBF in predicting in vivo bone bioactivity?Biomaterials, 2006, 27(15): 2907-2915. |
[8] | Mosmann Tim. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 1983, 65(1/2): 55-63. |
[9] | Takeuchi M, Abe Y, Yoshida Y, et al. Acid pretreatment of titanium implants. Biomaterials, 2003, 24(10): 1821-1827. |
[10] | WEN H B, LIU Q, DE WIJN J R, et al. Preparation of bioactive microporous titanium surface by a new two-step chemical treatment. Journal of Materials Science: Materials in Medicine, 1998, 9(3): 121-128. |
[11] | Lu Xiong, Wang Yingbo, Yang Xiudong, et al. Spectroscopic analysis of titanium surface functional groups under various surface modification and their behaviors in vitro and in vivo. Journal of Biomedical Materials Research Part A, 2008, 84(2): 523-534. |
[12] | Masmoudi M, Capek D, Abdelhedi R, et al. Application of surface response analysis to the optimisation of nitric passivation of cp titanium and Ti6Al4V. Surface and Coatings Technology, 2006, 200(24): 6651-6658. |
[13] | Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substrate microstructure. Journal of Biomedical Materials Research Part A, 2005, 74(1): 49-58. |
[14] | Faghihi Shahab, Azari Fereshteh, Zhilyaev Alexander P, et al. Cellular and molecular interactions between MC3T3-E1 pre- osteoblasts and nanostructured titanium produced by high-pressure torsion. Biomaterials, 2007, 28(27): 3887-3895. |
[15] | Altankov Georgi, Grinnell Frederick, Groth Thomas. Studies on the biocompatibility of materials: fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. Journal of Biomedical Materials Research, 1996, 30(3): 385-391. |
[1] | CAI Heqing, HAN Lu, YANG Songsong, XUE Xinyu, ZHANG Kou, SUN Zhicheng, LIU Ruping, HU Kun, WEI Yan. Fe3O4-DMSA-PEI Magnetic Nanoparticles with Small Particle Size: Preparation and Gene Loading [J]. Journal of Inorganic Materials, 2024, 39(5): 517-524. |
[2] | NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres [J]. Journal of Inorganic Materials, 2023, 38(8): 971-977. |
[3] | WEI Ziqin, XIA Xiang, LI Qin, LI Guorong, CHANG Jiang. Preparation and Properties of Barium Titanate/Calcium Silicate Composite Bioactive Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2022, 37(6): 617-622. |
[4] | ZHOU Ganghuai, LIU Yao, SHI Yuan, LIU Shaojun. Slurry Preparation and Stereolithography for Activated Alumina Catalyst Carrier [J]. Journal of Inorganic Materials, 2022, 37(3): 297-302. |
[5] | DONG Shaojie,WANG Xudong,SHEN Steve Guofang,WANG Xiaohong,LIN Kaili. Research Progress on Functional Modifications and Applications of Bioceramic Scaffolds [J]. Journal of Inorganic Materials, 2020, 35(8): 867-881. |
[6] | CHANG Yuchen, LIN Ziyang, XIE Xin, WU Zhangfan, YAO Aihua, YE Song, LIN Jian, WANG Deping, CUI Xu. An Injectable Composite Bone Cement Based on Mesoporous Borosilicate Bioactive Glass Spheres [J]. Journal of Inorganic Materials, 2020, 35(12): 1398-1406. |
[7] | LI Hao-Geng,GU Hong-Yu,ZHANG Yu-Zhi,SONG Li-Xin,WU Ling-Nan,QI Zhen-Yi,ZHANG Tao. Surface Protection of Polymer Materials from Atomic Oxygen: a Review [J]. Journal of Inorganic Materials, 2019, 34(7): 685-693. |
[8] | Jin-Jie WU, Yan LI, Ren-Chu WEI, Jian-Xin WANG, Shu-Xin QU, Jie WENG, Wei ZHI. Bioactivity and Mechanical Stability of Hydroxyapatite Ceramicsunder Micro-vibration Environment [J]. Journal of Inorganic Materials, 2019, 34(4): 417-424. |
[9] | ZHANG Biao, YANG Chang-An, SHI Pei. Synthesis of Graphene/Hydroxyapatite Composite Bioceramics via Plasma Activated Sintering [J]. Journal of Inorganic Materials, 2018, 33(12): 1355-1359. |
[10] | SHI Zhang-Yu, LI Quan, TANG Song-Chao, QIAN Jun, PAN Yong-Kang, WEI Jie. Surface Modification on Property of Mesoporous Calcium Magnesium Silicate/Polyetheretherketone Composites [J]. Journal of Inorganic Materials, 2018, 33(1): 67-74. |
[11] | CHEN Yu-Fang, LI Yu-Jie, ZHENG Chun-Man, XIE Kai, CHEN Zhong-Xue. Research Development on Lithium Rich Layered Oxide Cathode Materials [J]. Journal of Inorganic Materials, 2017, 32(8): 792-800. |
[12] | WANG Ming-Hui, ZHONG Hong-Bin, FAN Yu-Chi, CHEN Ting. Spark Plasma Sintering of Bioactive Ca2MgSi2O7 Ceramics [J]. Journal of Inorganic Materials, 2017, 32(8): 825-830. |
[13] | LV Yu-Zhen, SUN Qian, LI Chao, SHAN Bing-Liang, QI Bo, LI Cheng-Rong. Solvothermal Synthesis and Morphological Control of TiO2 Nanorods Modified with Oleic Acid [J]. Journal of Inorganic Materials, 2017, 32(7): 719-724. |
[14] | LV Zhi-Hui, HONG Tian-Zeng, NAI Xue-Ying, DONG Ya-Ping, LI Wu. Mechanism of Inorganic-organic Surface Modification of Anhydrous Calcium Sulfate Whisker [J]. Journal of Inorganic Materials, 2017, 32(1): 81-85. |
[15] | LI Lei, ZHANG Qiao-Ling, FAN Hong-Lei, LIU You-Zhi, WEI Bing, FENG Yu-Jie. Titanium Dioxide Particles Modified by Salicylic Acid and Arginine and Their Photocatalytic Reaction on Oil-Water Interface [J]. Journal of Inorganic Materials, 2016, 31(4): 413-420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||