[1] Meng F G, Meng S R, Chae A, et al. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res. , 2009, 43(6): 1489 - 1512. [2] Yu H Y, Xie Y J, Hu M X, et al. Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment. J. Membr. Sci. , 2005, 254(1/2): 219 - 227. [3] Susanto H, Feng Y, Ulbricht M. Fouling behavior of aqueous solutions of polyphenolic compounds during ultrafiltration. J. Food Eng. , 2009, 91(2): 333 - 340. [4] Mo H, Tay K G, Ng H Y. Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature. J. Membr. Sci. , 2008, 315(1/2): 28 - 35. [5] Jermann D, Pronk W, Boller M. Mutual influences between natural organic matter and inorganic particles and their combined effect on ultrafiltration membrane fouling. Environ. Sci. Technol. , 2008, 42(24): 9129 - 9136. [6] Liang S, Zhao Y, Liu C, et al. Effect of solution chemistry on the fouling potential of dissolved organic matter in membrane bioreactor systems. J. Membr. Sci. , 2008, 310(1/2): 503 - 511. [7] Liu C X, Zhang D R, He Y, et al. Modification of membrane surface for anti-biofouling performance: effect of anti-adhesion and anti-bacteria approaches. J. Membr. Sci. , 2010, 346(1/2): 121 - 130. [8] Kim J Y, Chang I S, Park H H, et al. New configuration of a membrane bioreactor for effective control of membrane fouling and nutrients removal in wastewater treatment. Desalination, 2008, 230(1/2/3): 153 - 161. [9] Porcelli N, Judd S. Chemical cleaning of potable water membranes: A review. Sep. Purif. Technol. , 2010, 71(2): 137 - 143. [10] Mi B, Elimelech M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. J. Membr. Sci. , 2010, 348(1/2): 337 - 345. [11] Herrmann J M, Duchamp C, Karkmaz M, et al. Environmental green chemistry as defined by photocatalysis. J. Hazard. Mater. , 2007, 146(3): 624 - 629. [12] Chong M N, Jin B, Chow C W K, et al. Recent developments in photocatalytic water treatment technology: a review. Water Res. , 2010, 44(10): 2997 - 3027. [13] Fujishima A, Zhang X T. Titanium dioxide photocatalysis: present situation and future approaches. C. R. Chim. , 2006, 9(5/6): 750 - 760. [14] Augugliaro V, Litter M, Palmisano L, et al. The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J. Photochem. Photobiol. C, 2006, 7(4): 127 - 144. [15] Pelton R, Geng X, Brook M. Photocatalytic paper from colloidal TiO2-fact of fantasy, Adv. Colloid Interface Sci. , 2006, 127(1): 42 - 53. [16] Tryba B. Immobilization of TiO2 and Fe-C-TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water. J. Hazard. Mater. , 2008, 151(2/3): 623 - 627. [17] Wang C X, Yin L W, Zhang L Y, et al. Magnetic (gamma- Fe2O3@SiO2)(n)@TiO2 functional hybrid nanoparticles with actived photocatalytic ability. J. Phys. Chem. C, 2009, 113(10): 4008 - 4011. [18] Li H S, Zhang Y P, Wang S Y, et al. Study on nanomagnets supported TiO2 photocatalysts prepared by a Sol–Gel process in reverse microemulsion combining with solvent-thermal technique. J. Hazard. Mater. , 2009, 169(1/2/3): 1045 - 1053. [19] Li X Z, Liu H. Photocatalytic oxidation using a new catalyst-TiO2 microsphere-for water and wastewater treatment. Environ. Sci. Technol. , 2003, 37(17): 3989 - 3994. [20] Xu J H, Dai W L, Li J, et al. Novel core-shell structured mesoporous titania microspheres: preparation, characterization and excellent photocatalytic activity in phenol abatement. J. Photochem. Photobiol. A, 2008, 195(2/3): 284 - 294. [21] Zhao X, Liu M H, Zhu Y F. Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances. Thin Solid Films, 2007, 515(18): 7127 - 7134. [22] Xiao Y T, Xu S S, Li Z H, et al. Progress of applied research on TiO2 photocatalysis-membrane separation coupling technology in water and wastewater treatments. Chin. Sci. Bull. , 2010, 55(14): 1345 - 1353. [23] Mozia S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. Sep. Purif. Technol. , 2010, 73(2): 71 - 91. [24] Molinari R, Palmisano L, Drioli E, et al. Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. J. Membr. Sci. , 2002, 206(1/2): 399 - 415. [25] Madaeni S S, Ghaemi N. Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. J. Membr. Sci. , 2007, 303(1/2): 221 - 233. [26] Tsuru T, Kan-no T, Yoshioka T, et al. A photocatalytic membrane reactor for gas-phase reactions using porous titanium oxide membranes. Catal. Today, 2003, 82(1-4): 41 - 48. [27] Syafei A D, Lin C F, Wu C H. Removal of natural organic matter by ultra?ltration with TiO2-coated membrane under UV irradiation. J. Colloid Interface Sci. , 2008, 323(1): 112 - 119. [28] H Choi, E Stathatos, Dionysiou D D. Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination, 2007, 202(1/2/3 ): 199 - 206. [29] Zhang H M, Quan X, Chen S, et al. Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability. Environ. Sci. Technol. , 2006, 40(19): 6104 - 6109. [30] Bae T H, Tak T M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. , 2005, 249(1/2): 1 - 8. [31] Kim S H, Kwak S Y, Sohn B H, et al. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J. Membr. Sci. , 2003, 211(1): 157 - 165. [32] Yang Y N, Wang P. Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol-gel process. Polymer, 2006, 47(8): 2683 - 2688. [33] Damodar R A, You S J, Chou H H. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard. Mater. , 2009, 172(2/3): 1321 - 1328. [34] Xu Z L, Yu L Y, Han L F. Polymer-nanoinorganic particles composite membranes: a brief overview. Front. Chem. Eng. Chin. , 2009, 3(3): 318 - 329. [35] Loddo V, Augugliaro V, Palmisano L. Photocatalytic membrane reactors: case studies and perspectives. Asia-Pac. J. Chem. Eng. , 2009, 4(3): 380 - 384. [36] J Kim, Bruggen B V D. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. , 2010, 158(7): 2335 - 2349. [37] Wang R C, Ren D J, Xia S Q, et al. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J. Hazard. Mater. , 2009, 169(1/2/3): 926 - 932. [38] Gumy D, Rincon A G, Hajdu R, et al. Solar photocatalysis for detoxi?cation and disinfection of water: different types of suspended and ?xed TiO2 catalysts study. Sol. Energy, 2006, 80(10): 1376 - 1381. [39] Ollis D F. Integrating photocatalysis and membrane technologies for water treatment. Ann. N. Y. Acad. Sci. , 2003, 984: 65 - 84. [40] Molinari R, Pirillo F, Loddo V, et al. Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catal. Today, 2006, 118(1/2): 205 - 213. [41] Oh S J, Kim N, Lee |