Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (3): 350-356.DOI: 10.15541/jim20220386
• RESEARCH LETTER • Previous Articles Next Articles
YANG Jiaxue1,2(), LI Wen1,3, WANG Yan1,4(), ZHU Zhaojie1,4, YOU Zhenyu1,4, LI Jianfu1,4, TU Chaoyang1,4()
Received:
2022-07-05
Revised:
2022-08-16
Published:
2023-03-20
Online:
2022-11-16
Contact:
WANG Yan, professor. E-mail: wy@fjirsm.ac.cn;About author:
YANG Jiaxue (1995-), female, Mater candidate. E-mail: yangjiaxue@fjirsm.ac.cn
Supported by:
CLC Number:
YANG Jiaxue, LI Wen, WANG Yan, ZHU Zhaojie, YOU Zhenyu, LI Jianfu, TU Chaoyang. Spectroscopic and Yellow Laser Features of Dy3+: Y3Al5O12 Single Crystals[J]. Journal of Inorganic Materials, 2023, 38(3): 350-356.
Crystal | c/% (in atomic) | keff | Nc/cm-3 | α/cm-1 | σabs/cm2 |
---|---|---|---|---|---|
0.5% Dy: YAG | 0.239 | 0.478 | 3.31×1019 | 0.055 | 1.66×10-21 |
1.0% Dy: YAG | 0.479 | 0.479 | 6.61×1019 | 0.103 | 1.56×10-21 |
2.0% Dy: YAG | 0.970 | 0.485 | 1.33×1020 | 0.215 | 1.61×10-21 |
3.0% Dy: YAG | 1.427 | 0.475 | 1.95×1020 | 0.338 | 1.73×10-21 |
4.0% Dy: YAG | 1.975 | 0.494 | 2.69×1020 | 0.430 | 1.60×10-21 |
Table 1 Concentration, effective segregation coefficient and absorption cross-section of Dy3+ in YAG crystal
Crystal | c/% (in atomic) | keff | Nc/cm-3 | α/cm-1 | σabs/cm2 |
---|---|---|---|---|---|
0.5% Dy: YAG | 0.239 | 0.478 | 3.31×1019 | 0.055 | 1.66×10-21 |
1.0% Dy: YAG | 0.479 | 0.479 | 6.61×1019 | 0.103 | 1.56×10-21 |
2.0% Dy: YAG | 0.970 | 0.485 | 1.33×1020 | 0.215 | 1.61×10-21 |
3.0% Dy: YAG | 1.427 | 0.475 | 1.95×1020 | 0.338 | 1.73×10-21 |
4.0% Dy: YAG | 1.975 | 0.494 | 2.69×1020 | 0.430 | 1.60×10-21 |
6H15/2 → | n | 0.5%Dy: YAG | 1.0%Dy: YAG | 2.0%Dy: YAG | 3.0%Dy: YAG | 4.0%Dy: YAG | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | ||||||||
4M17/2+6P3/2+ 4G9/2+4I9/2 | 327 | 1.89 | 0.447 | 0.298 | 0.460 | 0.320 | 0.526 | 0.323 | 0.498 | 0.327 | 0.467 | 0.341 | |||||
6P7/2+4I11/2 | 353 | 1.88 | 0.905 | 0.723 | 1.128 | 0.850 | 1.371 | 1.182 | 1.719 | 1.454 | 1.648 | 1.403 | |||||
6P5/2+4M19/2 | 367 | 1.87 | 0.733 | 0.474 | 0.806 | 0.511 | 0.907 | 0.525 | 0.898 | 0.540 | 0.918 | 0.560 | |||||
4K17/2+4M21/2+ 4I13/2+4F7/2 | 387 | 1.86 | 0.651 | 0.729 | 0.723 | 0.793 | 0.801 | 0.854 | 0.851 | 0.908 | 0.873 | 0.925 | |||||
4I15/2 | 451 | 1.85 | 0.257 | 0.178 | 0.253 | 0.191 | 0.187 | 0.191 | 0.213 | 0.192 | 0.227 | 0.199 | |||||
6F3/2 | 755 | 1.82 | 0.217 | 0.158 | 0.189 | 0.170 | 0.202 | 0.171 | 0.225 | 0.173 | 0.205 | 0.181 | |||||
6F5/2 | 804 | 1.82 | 1.083 | 0.909 | 1.140 | 0.975 | 1.266 | 0.983 | 1.252 | 0.996 | 1.228 | 1.039 | |||||
6F7/2 | 908 | 1.82 | 2.07 | 2.057 | 2.361 | 2.226 | 2.243 | 2.328 | 2.462 | 2.426 | 2.565 | 2.502 | |||||
6H7/2+6F9/2 | 1088 | 1.81 | 2.577 | 2.741 | 2.74 | 3.022 | 3.249 | 3.403 | 3.480 | 3.731 | 3.528 | 3.767 | |||||
RMS/(×10-20, cm2) | 0.180 | 0.230 | 0.237 | 0.246 | 0.226 | ||||||||||||
Ωt(t=2, 4, 6)/(×10-20, cm2) | Ω2=0.793 Ω4=1.284 Ω6=2.634 | Ω2=0.747 Ω4=1.520 Ω6=2.825 | Ω2=0.498 Ω4=2.155 Ω6=2.848 | Ω2=0.312 Ω4=2.674 Ω6=2.887 | Ω2=0.142 Ω4=2.573 Ω6=3.011 |
Table 2 Experimental line strength, calculated line strength, and J-O intensity parameters of Dy: YAG crystals
6H15/2 → | n | 0.5%Dy: YAG | 1.0%Dy: YAG | 2.0%Dy: YAG | 3.0%Dy: YAG | 4.0%Dy: YAG | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | ||||||||
4M17/2+6P3/2+ 4G9/2+4I9/2 | 327 | 1.89 | 0.447 | 0.298 | 0.460 | 0.320 | 0.526 | 0.323 | 0.498 | 0.327 | 0.467 | 0.341 | |||||
6P7/2+4I11/2 | 353 | 1.88 | 0.905 | 0.723 | 1.128 | 0.850 | 1.371 | 1.182 | 1.719 | 1.454 | 1.648 | 1.403 | |||||
6P5/2+4M19/2 | 367 | 1.87 | 0.733 | 0.474 | 0.806 | 0.511 | 0.907 | 0.525 | 0.898 | 0.540 | 0.918 | 0.560 | |||||
4K17/2+4M21/2+ 4I13/2+4F7/2 | 387 | 1.86 | 0.651 | 0.729 | 0.723 | 0.793 | 0.801 | 0.854 | 0.851 | 0.908 | 0.873 | 0.925 | |||||
4I15/2 | 451 | 1.85 | 0.257 | 0.178 | 0.253 | 0.191 | 0.187 | 0.191 | 0.213 | 0.192 | 0.227 | 0.199 | |||||
6F3/2 | 755 | 1.82 | 0.217 | 0.158 | 0.189 | 0.170 | 0.202 | 0.171 | 0.225 | 0.173 | 0.205 | 0.181 | |||||
6F5/2 | 804 | 1.82 | 1.083 | 0.909 | 1.140 | 0.975 | 1.266 | 0.983 | 1.252 | 0.996 | 1.228 | 1.039 | |||||
6F7/2 | 908 | 1.82 | 2.07 | 2.057 | 2.361 | 2.226 | 2.243 | 2.328 | 2.462 | 2.426 | 2.565 | 2.502 | |||||
6H7/2+6F9/2 | 1088 | 1.81 | 2.577 | 2.741 | 2.74 | 3.022 | 3.249 | 3.403 | 3.480 | 3.731 | 3.528 | 3.767 | |||||
RMS/(×10-20, cm2) | 0.180 | 0.230 | 0.237 | 0.246 | 0.226 | ||||||||||||
Ωt(t=2, 4, 6)/(×10-20, cm2) | Ω2=0.793 Ω4=1.284 Ω6=2.634 | Ω2=0.747 Ω4=1.520 Ω6=2.825 | Ω2=0.498 Ω4=2.155 Ω6=2.848 | Ω2=0.312 Ω4=2.674 Ω6=2.887 | Ω2=0.142 Ω4=2.573 Ω6=3.011 |
4F9/2→2S+1LJ | 0.5%Dy: YAG | 1.0%Dy: YAG | 2.0%Dy: YAG | 3.0%Dy: YAG | 4.0%Dy: YAG | |||||
---|---|---|---|---|---|---|---|---|---|---|
A/s-1 | β/% | A/s-1 | β/% | A/s-1 | β/% | A/s-1 | β/% | A/s-1 | β/% | |
6F1/2 | 0.08 | 0.01 | 0.10 | 0.01 | 0.14 | 0.01 | 0.17 | 0.02 | 0.16 | 0.02 |
6F3/2 | 0.15 | 0.02 | 0.16 | 0.02 | 0.16 | 0.02 | 0.16 | 0.02 | 0.17 | 0.02 |
6F5/2 | 1.82 | 0.20 | 1.81 | 0.19 | 1.54 | 0.15 | 1.34 | 0.13 | 1.05 | 0.10 |
6F7/2 | 13.63 | 1.49 | 14.26 | 1.46 | 7.29 | 1.53 | 8.21 | 1.58 | 8.18 | 1.57 |
6H5/2 | 4.02 | 0.44 | 4.58 | 0.47 | 5.78 | 0.58 | 6.78 | 0.66 | 6.67 | 0.65 |
6H7/2 +6F9/2 | 54.73 | 5.96 | 59.10 | 6.04 | 49.39 | 6.71 | 56.13 | 7.19 | 55.44 | 7.10 |
6H9/2 | 17.78 | 1.94 | 18.84 | 1.93 | 15.42 | 1.98 | 16.34 | 2.02 | 16.13 | 1.99 |
6H11/2 | 43.30 | 4.72 | 44.21 | 4.52 | 25.93 | 4.26 | 24.99 | 4.06 | 23.05 | 3.85 |
6H13/2 | 456.91 | 49.79 | 483.85 | 49.46 | 482.81 | 48.22 | 486.21 | 47.34 | 479.08 | 46.58 |
6H15/2 | 325.23 | 35.44 | 351.44 | 35.92 | 365.79 | 36.54 | 379.80 | 36.98 | 392.16 | 38.13 |
τr/ms | 1.090 | 1.022 | 0.999 | 0.974 | 0.972 |
Table 3 Spontaneous emission transition rate (A) and fluorescence branching ratio (β) of Dy: YAG crystals
4F9/2→2S+1LJ | 0.5%Dy: YAG | 1.0%Dy: YAG | 2.0%Dy: YAG | 3.0%Dy: YAG | 4.0%Dy: YAG | |||||
---|---|---|---|---|---|---|---|---|---|---|
A/s-1 | β/% | A/s-1 | β/% | A/s-1 | β/% | A/s-1 | β/% | A/s-1 | β/% | |
6F1/2 | 0.08 | 0.01 | 0.10 | 0.01 | 0.14 | 0.01 | 0.17 | 0.02 | 0.16 | 0.02 |
6F3/2 | 0.15 | 0.02 | 0.16 | 0.02 | 0.16 | 0.02 | 0.16 | 0.02 | 0.17 | 0.02 |
6F5/2 | 1.82 | 0.20 | 1.81 | 0.19 | 1.54 | 0.15 | 1.34 | 0.13 | 1.05 | 0.10 |
6F7/2 | 13.63 | 1.49 | 14.26 | 1.46 | 7.29 | 1.53 | 8.21 | 1.58 | 8.18 | 1.57 |
6H5/2 | 4.02 | 0.44 | 4.58 | 0.47 | 5.78 | 0.58 | 6.78 | 0.66 | 6.67 | 0.65 |
6H7/2 +6F9/2 | 54.73 | 5.96 | 59.10 | 6.04 | 49.39 | 6.71 | 56.13 | 7.19 | 55.44 | 7.10 |
6H9/2 | 17.78 | 1.94 | 18.84 | 1.93 | 15.42 | 1.98 | 16.34 | 2.02 | 16.13 | 1.99 |
6H11/2 | 43.30 | 4.72 | 44.21 | 4.52 | 25.93 | 4.26 | 24.99 | 4.06 | 23.05 | 3.85 |
6H13/2 | 456.91 | 49.79 | 483.85 | 49.46 | 482.81 | 48.22 | 486.21 | 47.34 | 479.08 | 46.58 |
6H15/2 | 325.23 | 35.44 | 351.44 | 35.92 | 365.79 | 36.54 | 379.80 | 36.98 | 392.16 | 38.13 |
τr/ms | 1.090 | 1.022 | 0.999 | 0.974 | 0.972 |
Fig. 3 Emission spectra of YAG crystals with different Dy3+ concentrations excited by 447 nm (a) and variation of intensity of 582 nm and 4F9/2 level lifetime with Dy3+ concentrations in Dy: YAG crystals (b)
Crystal | τr(4F9/2 level)/ms | τ(4F9/2 level)/ms | σem for yellow emission/(×10-21, cm2) | σemτ/(×10-21, cm2∙ms) | η/% | Ref. |
---|---|---|---|---|---|---|
0.5%Dy: YAG | 1.090 | 0.894 | 2.36 | 2.110 | 82.02 | This work |
1.0%Dy: YAG | 1.022 | 0.823 | 2.71 | 2.230 | 80.53 | |
2.0%Dy: YAG | 0.999 | 0.688 | 2.66 | 1.830 | 68.87 | |
3.0%Dy: YAG | 0.974 | 0.571 | 2.54 | 1.450 | 58.62 | |
4.0%Dy: YAG | 0.972 | 0.471 | 2.49 | 1.170 | 48.46 | |
1.0%Dy3+: Gd3Ga3Al2O12 | 0.596 | 0.573 | 3.20 | 1.834 | 96.14 | [ |
3.0%Dy3+: Lu2O3 | 0.756 | 0.112 | 7.10 | 7.952 | 14.80 | [ |
2.0%Dy3+: CeF3 | 3.747 | 1.530 | 9.259 | 0.1417 | 40.83 | [ |
1.0%Dy3+: GdScO3 | 0.650 | 0.459 | 4.10 | 1.882 | 70.60 | [ |
2.0%Dy3+: Gd3Ga5O12 | 1.107 | 0.790 | 2.62 | 2.070 | 71.40 | [ |
2.0%Dy3+: LaF3 | 1.700 | 1.370 | 7.00 | 9.590 | 80.59 | [ |
Table 4 Emission property parameters of Dy3+ in YAG and other crystals
Crystal | τr(4F9/2 level)/ms | τ(4F9/2 level)/ms | σem for yellow emission/(×10-21, cm2) | σemτ/(×10-21, cm2∙ms) | η/% | Ref. |
---|---|---|---|---|---|---|
0.5%Dy: YAG | 1.090 | 0.894 | 2.36 | 2.110 | 82.02 | This work |
1.0%Dy: YAG | 1.022 | 0.823 | 2.71 | 2.230 | 80.53 | |
2.0%Dy: YAG | 0.999 | 0.688 | 2.66 | 1.830 | 68.87 | |
3.0%Dy: YAG | 0.974 | 0.571 | 2.54 | 1.450 | 58.62 | |
4.0%Dy: YAG | 0.972 | 0.471 | 2.49 | 1.170 | 48.46 | |
1.0%Dy3+: Gd3Ga3Al2O12 | 0.596 | 0.573 | 3.20 | 1.834 | 96.14 | [ |
3.0%Dy3+: Lu2O3 | 0.756 | 0.112 | 7.10 | 7.952 | 14.80 | [ |
2.0%Dy3+: CeF3 | 3.747 | 1.530 | 9.259 | 0.1417 | 40.83 | [ |
1.0%Dy3+: GdScO3 | 0.650 | 0.459 | 4.10 | 1.882 | 70.60 | [ |
2.0%Dy3+: Gd3Ga5O12 | 1.107 | 0.790 | 2.62 | 2.070 | 71.40 | [ |
2.0%Dy3+: LaF3 | 1.700 | 1.370 | 7.00 | 9.590 | 80.59 | [ |
[1] |
LI N, LIU B, SHI J J, et al. Research progress of rare-earth doped laser crystals in visible region. Journal of Inorganic Materials, 2019, 34(6): 573.
DOI |
[2] |
SHI Z X, WANG J, GUAN X. Multicolor upconversion emission tuning of NaY(WO4)2: Dy3+ via Er3+ doping. Journal of Inorganic Materials, 2018, 33(5): 521.
DOI URL |
[3] |
WANG Z J, LI P L, YANG Z P, et al. Luminescence characteristics of Dy3+ activated LiCaBO3 phosphor. Journal of Inorganic Materials, 2009, 24(5): 1069.
DOI URL |
[4] |
WANG M L, XU J Y, ZHANG Y, et al. Growth and thermo- luminescence properties of Dy: Bi4Si3O12 crystals. Journal of Inorganic Materials, 2016, 31(10): 1068.
DOI URL |
[5] |
CAVALLI E. Optical spectroscopy of Dy3+ in crystalline hosts: general aspects, personal considerations and some news. Optical Materials X, 2019, 1: 100014.
DOI URL |
[6] | KRÄNKEL C, MARZAHl D T, MOGLIA F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser & Photonics Rev., 2016, 10: 10548. |
[7] |
TEMIZ S A, ATASEVEN A, DURSUN R, et al. Successful treatment of poikiloderma of Civatte with a 577 nm pro-yellow laser. J. Cosmet. Dermatol., 2020, 19: 2769.
DOI URL |
[8] | UZLU D, ERDÖL H, KOLA M, et al. The efficacy of subthreshold micropulse yellow laser (577 nm) in chronic central serous chorioretinopathy. Laser Med. Sci., 2020, 12: 981. |
[9] |
PIZZOCARO M, COSTANZO G A, GODONE A, et al. Realization of an ultrastable 578 nm laser for an Yb lattice clock. IEEE T. Ultrason. Ferr., 2012, 59: 426.
DOI URL |
[10] | ZONG Q S, BIAN Q, MA H D, et al. The research progress of the new sodium beacon laser. Laser Technol., 2020, 44: 404. |
[11] |
BOWMAN S R, O’CONNOR S, CONDON N J. Diode pumped yellow dysprosium lasers. Opt. Express, 2012, 20: 12906.
DOI URL |
[12] |
CAI XIUYUAN, WANG YAN, LI JIANFU, et al. Thermal, and optical features study of Dy:YAlO3 and Dy/Tb:YAlO3 crystals for yellow laser applications. J. Lumin., 2020, 231: 117711.
DOI URL |
[13] |
LISIECKI R, SOLARZ P, NIEDŹWIEDZKI T, et al. Gd3Ga3Al2O12 single crystal doped with dysprosium spectroscopic properties and luminescence characteristics. J. Alloys Compd., 2016, 689: 733.
DOI URL |
[14] |
SHI J J, LIU B, WANG Q G, et al. Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser. Chin. Phys. B, 2018, 27: 077802.
DOI URL |
[15] |
CHEN H, LOISEAU P, AKA G. Optical properties of Dy3+-doped CaYAlO4 crystal. J. Lumin., 2018, 199: 509.
DOI URL |
[16] |
JIANG T, GONG X, CHEN Y, et al. Spectroscopic properties of Dy3+-doped NaBi(WO4)2 crystal. J. Lumin., 2019, 210: 83.
DOI URL |
[17] |
YANG Y, ZHANG L, LI S, et al. Crystal growth and 570 nm emission of Dy3+ doped CeF3 single crystal. J. Lumin., 2019, 215: 116707.
DOI URL |
[18] | METZ P W, MOGLIA F, REICHERT F, et al. Novel Rare Earth Solid State Lasers with Emission Wavelengths in the Visible Spectral Range. Lasers and Electro-Optics Europe, Munich, Germany, 2013: 1. |
[19] |
BOLOGNESI G, PARISI D, CALONICO D, et al. Yellow laser performance of Dy3+ in co-doped Dy,Tb:LiLuF4. Opt. Lett., 2014, 39: 6628.
DOI URL |
[20] |
JU Q J, SHEN H, YAO W M, et al. Laser diode pumped Dy: YAG yellow laser. Chin. J. Lasers, 2016, 43: 0815002.
DOI URL |
[21] |
PAN Y X, ZHOU S D, LI D Z, et al. Growth and optical properties of Dy:Y3Al5O12 crystal. Physica B Condens. Matter, 2018, 530: 317.
DOI URL |
[22] |
XU J, SONG Q S, LIU J, et al. Spectroscopic characteristics of Dy3+-doped Y3Al5O12 (YAG) and Y3ScAl4O12 (YSAG) garnet single crystals grown by the micro-pulling-down method. J. Lumin., 2019, 215: 116675.
DOI URL |
[23] |
YU H, SU L G, QIAN X B, et al. Influence of Gd3+ on the optical properties of Dy3+-activated CaF2 single crystal for white LED application. J. Electron. Mater., 2019, 48: 2910.
DOI |
[24] |
XU F, FANG L Z, ZHOU X, et al. Multi-color emission of Dy3+/Eu3+ co-doped LiLuF4 single crystals for white light-emitting devices. Opt. Mater., 2020, 108: 110222.
DOI URL |
[25] |
DING S J, LI H Y, REN H, et al. Ultra-broad absorption band of a Dy3+-doped Gd3Sc2Al3O12 garnet crystal at around 450 nm: a potential crystal for InGaN LD-pumped all-solid-state yellow laser. CrystEngComm, 2021, 23: 5481.
DOI URL |
[26] |
JUDD B R. Optical absorption intensities of rare-earth ions. Physical Review, 1962, 127: 750.
DOI URL |
[27] | OFELT G S. Intensities of crystal spectra of rare earth ions. Journal of Chemical Physics, 1962, 37: 511. |
[28] | CARNALL W T, FIELDS P R, RAJNAK K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. Chemical Physics, 1968, 49: 4424. |
[29] |
ZELMON D E, SMALL D L, PAGE R. Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm. Appl. Opt., 1998, 37: 4933.
DOI URL |
[30] |
JAYASANKAR C K, RUKMINI E. Spectroscopic investigations of Dy3+ ions in borosulphate glasses. Physica B, 1997, 240: 273.
DOI URL |
[31] |
MCCAMY C S. Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl., 1992, 17: 142.
DOI URL |
[32] | AULL B F, JENSSEN H P. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE.Quantum Elect., 1982, 18: 925. |
[33] |
LIU J, SONG Q S, LI D Z, et al. Crystal growth and spectroscopic characterization of Sm:LaMgAl11O19 crystal. J. Lumin., 2019, 215: 116701.
DOI URL |
[34] |
FANG P, LIU W P, ZHANG Q L, et al. Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy:GdScO3. Lumin., 2018, 201: 176.
DOI URL |
[35] |
WANG Y, YOU Z Y, LI J F, et al. Optical properties of Dy3+ ion in GGG laser crystal. Phys. D Appl. Phys., 2010, 43: 075402.
DOI |
[36] |
LI S M, ZHANG L H, ZHANG P X, et al. Spectroscopic characterizations of Dy:LaF3 crystal. Infrared Phys. Techn., 2017, 87: 65.
DOI URL |
[37] | BOWMAN S R, CONDON N J, O’CONNOR S, et al. Diode-pumped Dysprosium Laser Materials. SPIE Defense, Security, and Sensing, Orlando, Florida, United States, 2009. |
[38] |
BOLOGNESI G, PARISI D, CALONICO D, et al. Yellow laser performance of Dy3+ in co-doped Dy,Tb:LiLuF4. Optics Letters, 2014, 39: 6628.
DOI URL |
[1] | CAI Hao, WANG Qihang, ZOU Zhaoyong. Crystallization Pathway of Monohydrocalcite via Amorphous Calcium Carbonate Regulated by Magnesium Ion [J]. Journal of Inorganic Materials, 2024, 39(11): 1275-1282. |
[2] | HAO Yongxin, QIN Juan, SUN Jun, YANG Jinfeng, LI Qinglian, HUANG Guijun, XU Jingjun. Impact of Crucible Bottom Shape on the Growth of Congruent Lithium Niobate Crystals by Czochralski Method [J]. Journal of Inorganic Materials, 2024, 39(10): 1167-1174. |
[3] | QIN Juan, LIANG Dandan, SUN Jun, YANG Jinfeng, HAO Yongxin, LI Qinglian, ZHANG Ling, XU Jingjun. Flat Shoulder Congruent Lithium Niobate Crystals Grown by the Czochralski Method [J]. Journal of Inorganic Materials, 2023, 38(8): 978-986. |
[4] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[5] | SHI Xiaotu, ZHANG Qingli, SUN Guihua, LUO Jianqiao, DOU Renqin, WANG Xiaofei, GAO Jinyun, ZHNAG Deming, LIU Jiandang, YE Bangjiao. Positron Annihilation Study of Yb:YAG Single Crystal Defects under Czochralski Method [J]. Journal of Inorganic Materials, 2023, 38(3): 316-321. |
[6] | WU Zhen, LI Huifang, ZHANG Zhonghan, ZHANG Zhen, LI Yang, LAN Jianghe, SU Liangbi, WU Anhua. Growth and Characterization of CeF3 Crystals for Magneto-optical Application [J]. Journal of Inorganic Materials, 2023, 38(3): 296-302. |
[7] | QI Xuejun, ZHANG Jian, CHEN Lei, WANG Shaohan, LI Xiang, DU Yong, CHEN Junfeng. Macroscopic Defects of Large Bi12GeO20 Crystals Grown Using Vertical Bridgman Method [J]. Journal of Inorganic Materials, 2023, 38(3): 280-287. |
[8] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[9] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[10] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[11] | WANG Haidong, WANG Yan, ZHU Zhaojie, LI Jianfu, LAKSHMINARAYANA Gandham, TU Chaoyang. Crystal Growth and Structural, Optical, and Visible Fluorescence Traits of Dy3+-doped SrGdGa3O7 Crystal [J]. Journal of Inorganic Materials, 2023, 38(12): 1475-1482. |
[12] | MING Yue, HU Yue, MEI Anyi, RONG Yaoguang, HAN Hongwei. Application of Lead Acetate Additive for Printable Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2022, 37(2): 197-203. |
[13] | XU Jiayue, LI Zhichao, PAN Yunfang, ZHOU Ding, WEN Feng, MA Wenjun. Research Progress of Hyperstoichiometric UO2 Crystals [J]. Journal of Inorganic Materials, 2020, 35(11): 1183-1192. |
[14] | Rong-Hui LI, Yi-Zheng JIA, Nan-Nan HU. 3D Hierarchical Flower Like Alumina Nanomaterials: Preparation and Arsenic Removal Performance [J]. Journal of Inorganic Materials, 2019, 34(5): 553-559. |
[15] | WANG Dong-Hai, XUE Yan-Yan, LI Na, ZHOU Shi-Ming, XU Xiao-Dong, LI Dong-Zhen, XU Jun, WANG Qing-Guo. Micro-tube Sapphire Crystal Grown by the Edge-defined-film Fed Method [J]. Journal of Inorganic Materials, 2019, 34(12): 1290-1294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||