Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (12): 1267-1274.DOI: 10.15541/jim20220265
Special Issue: 【结构材料】热障与环境障涂层(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
LIU Pingping1,2(), ZHONG Xin1(
), ZHANG Le3, LI Hong2(
), NIU Yaran1, ZHANG Xiangyu1, LI Qilian3, ZHENG Xuebin1
Received:
2022-05-06
Revised:
2022-05-29
Published:
2022-12-20
Online:
2022-06-16
Contact:
ZHONG Xin, assistant professor. E-mail: zhongxin@mail.sic.ac.cn;About author:
LIU Pingping (1995-), female, Master candidate. E-mail: ppliu1234@163.com
Supported by:
CLC Number:
LIU Pingping, ZHONG Xin, ZHANG Le, LI Hong, NIU Yaran, ZHANG Xiangyu, LI Qilian, ZHENG Xuebin. Molten Salt Corrosion Behaviors and Mechanisms of Ytterbium Silicate Environmental Barrier Coating[J]. Journal of Inorganic Materials, 2022, 37(12): 1267-1274.
Yb2SiO5 | Yb2Si2O7 | Si | |
---|---|---|---|
Primary Ar/(L·min-1) | 46 | 53 | 52 |
Secondary H2/(L·min-1) | 14 | 10 | 13 |
Carrier Ar/(L·min-1) | 2.3 | 2.3 | 2.0 |
Spray distance/mm | 220 | 220 | 290 |
Table 1 Operating parameters used for vacuum plasma spraying
Yb2SiO5 | Yb2Si2O7 | Si | |
---|---|---|---|
Primary Ar/(L·min-1) | 46 | 53 | 52 |
Secondary H2/(L·min-1) | 14 | 10 | 13 |
Carrier Ar/(L·min-1) | 2.3 | 2.3 | 2.0 |
Spray distance/mm | 220 | 220 | 290 |
Fig. 1 XRD patterns and SEM morphologies of as-sprayed Yb2SiO5/Yb2Si2O7/Si coating (a) XRD patterns; (b) Surface morphology; (c-e) Cross-sectional morphologies
Fig. 4 Surface morphologies of Yb2SiO5/Yb2Si2O7/Si coating after molten salt corrosion for different time and correponding EDS analyses of different areas (a-c) Low magnification; (d-f) High magnification
Fig. 6 Cross-sectional morphologies and corresponding EDS element mappings of Yb2SiO5/Yb2Si2O7/Si EBCs after molten salt corrosion for different time Colorful figures are available on website
Fig. 7 High-magnification cross-sectional morphologies and corresponding EDS mappings of infiltration zone in Yb2Si2O7 interlayer after molten salt corrosion for different time Colorful figures are available on website
Position | Yb | Si | Na | O |
---|---|---|---|---|
1 | 21.69 | 14.27 | 1.98 | 62.06 |
2 | 24.91 | 12.57 | - | 62.52 |
3 | 18.29 | 18.09 | - | 63.62 |
4 | 10.15 | 18.67 | 2.41 | 58.77 |
5 | 22.50 | 13.75 | 1.67 | 62.08 |
6 | 24.92 | 12.57 | - | 62.51 |
7 | 18.03 | 18.31 | - | 63.66 |
8 | 8.95 | 19.25 | 13.25 | 58.55 |
9 | 22.93 | 13.20 | 2.04 | 61.82 |
10 | 24.45 | 12.96 | - | 62.59 |
11 | 17.82 | 18.04 | - | 63.25 |
12 | 8.91 | 19.21 | 13.39 | 58.49 |
Table 2 EDS elemental compositions of the marked regions in Fig. 7/%(in atom)
Position | Yb | Si | Na | O |
---|---|---|---|---|
1 | 21.69 | 14.27 | 1.98 | 62.06 |
2 | 24.91 | 12.57 | - | 62.52 |
3 | 18.29 | 18.09 | - | 63.62 |
4 | 10.15 | 18.67 | 2.41 | 58.77 |
5 | 22.50 | 13.75 | 1.67 | 62.08 |
6 | 24.92 | 12.57 | - | 62.51 |
7 | 18.03 | 18.31 | - | 63.66 |
8 | 8.95 | 19.25 | 13.25 | 58.55 |
9 | 22.93 | 13.20 | 2.04 | 61.82 |
10 | 24.45 | 12.96 | - | 62.59 |
11 | 17.82 | 18.04 | - | 63.25 |
12 | 8.91 | 19.21 | 13.39 | 58.49 |
[1] |
PADTURE N P. Advanced structural ceramics in aerospace propulsion. Nature Materials, 2016, 15(8): 804-809.
DOI PMID |
[2] | LEE K N, FOX D S, ELDRIDGE J I, et al. Advanced environmental barrier coatings developed for SiC/SiC composite vanes (2022-06-01). https://ntrs.nasa.gov/search.jsp?R=20050214693. |
[3] |
EATON H E, LINSEY G D. Accelerated oxidation of SiC CMC's by water vapor and protection via environmental barrier coating approach. Journal of the European Ceramic Society, 2002, 22(14/15): 2741-2747.
DOI URL |
[4] |
RICHARDS B T, WADLEY H N G. Plasma spray deposition of tri-layer environmental barrier coatings. Journal of the European Ceramic Society, 2014, 34(12): 3069-3083.
DOI URL |
[5] |
TIAN Z L, ZHENG L Y, WANG J M, et al. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE=Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. Journal of the European Ceramic Society, 2016, 36(1): 189-202.
DOI URL |
[6] |
LIU J, ZHANG L T, LIU Q M, et al. Calcium-magnesium- aluminosilicate corrosion behaviors of rare-earth disilicates at 1400 ℃. Journal of the European Ceramic Society, 2013, 33(15/16): 3419-3428.
DOI URL |
[7] |
JIANG F R, CHENG L F, WANG Y G. Hot corrosion of RE2SiO5 with different cation substitution under calcium-magnesium- aluminosilicate attack. Ceramics International, 2017, 43(12): 9019-9023.
DOI URL |
[8] |
DONG Y, REN K, LU Y H, et al. High-entropy environmental barrier coating for the ceramic matrix composites. Journal of the European Ceramic Society, 2019, 39(7): 2574-2579.
DOI URL |
[9] |
SUN L C, REN X M, DU T F, et al. High entropy engineering: new strategy for the critical property optimizations of rare earth silicates. Journal of Inorganic Materials, 2021, 36(4): 339-346.
DOI |
[10] |
ZHONG X, NIU Y R, LI H, et al. Thermal shock resistance of tri-layer Yb2SiO5/Yb2Si2O7/Si coating for SiC and SiC-matrix composites. Journal of the American Ceramic Society, 2018, 101(10): 4743-4752.
DOI URL |
[11] |
ZHU T, NIU Y R, ZHONG X, et al. Influence of phase composition on microstructure and thermal properties of ytterbium silicate coatings deposited by atmospheric plasma spray. Journal of the European Ceramic Society, 2018, 38(11): 3974-3985.
DOI URL |
[12] |
ZHONG X, NIU Y R, LI HONG, et al. Microstructure evolution and thermomechanical properties of plasma-sprayed Yb2SiO5 coating during thermal aging. Journal of the American Ceramic Society, 2017, 100(5): 1896-1906.
DOI URL |
[13] |
ZHONG X, WANG Y W, NIU Y R, et al. Corrosion behaviors and mechanisms of ytterbium silicate environmental barrier coatings by molten calcium-magnesium-alumino-silicate melts. Corrosion Science, 2021, 191: 109718.
DOI URL |
[14] |
WANG Y W, NIU Y R, ZHONG X, et al. Water vapor corrosion behaviors of plasma sprayed RE2SiO5 (RE=Gd, Y, Er) coatings. Corrosion Science, 2020, 167: 108529.
DOI URL |
[15] | ZHONG X, ZHU T, NIU Y R, et al. Effect of microstructure evolution and crystal structure on thermal properties for plasma- sprayed RE2SiO5 (RE=Gd, Y, Er) environmental barrier coatings. Journal of Materials Science & Technology, 2021, 85: 141-151. |
[16] |
LI G, QIN L, CAO X Q, et al. Water vapor corrosion resistance and failure mechanism of SiCf/SiC composites completely coated with plasma sprayed tri-layer EBCs. Ceramics International, 2022, 48(5): 7082-7092.
DOI URL |
[17] |
LEE K N, FOX D S, BANSAL N P. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. Journal of the European Ceramic Society, 2005, 25(10): 1705-1715.
DOI URL |
[18] |
ZHANG X F, ZHOU K S, LIU M, et al. Preparation of Si/mullite/ Yb2SiO5 environment barrier coating (EBC) by plasma spray- physical vapor deposition (PS-PVD). Journal of Inorganic Materials, 2018, 33(3): 325-330.
DOI URL |
[19] | WANG C, ZHANG X F, ZHOU K S, et al. Nano-composite structured environmental barrier coat-ings prepared by plasma spray- physical vapor deposition and their thermal cycle performance. Rare Metal Materials and Engineering, 2019, 48(11): 3455-3462 |
[20] |
ZHANG X F, SONG J B, DENG Z Q, et al. Interface evolution of Si/Mullite/Yb2SiO5 PS-PVD environmental barrier coatings under high temperature. Journal of the European Ceramic Society, 2020, 40(4): 1478-1487.
DOI URL |
[21] |
ZHANG X F, ZHOU K S, LIU M, et al. Oxidation and thermal shock resistant properties of Al-modified environmental barrier coating on SiCf/SiC composites. Ceramics International, 2017, 43(16): 13075-13082.
DOI URL |
[22] |
HU X X, XU F F, LI K W, et al. Water vapor corrosion behavior and failure mechanism of plasma sprayed mullite/Lu2Si2O7-Lu2SiO5 coatings. Ceramics International, 2018, 44(12): 14177-14185.
DOI URL |
[23] | LIU P P, ZHONG X, NIU Y R, et al. Reaction behaviors and mechanisms of tri-layer Yb2SiO5/Yb2Si2O7/Si environmental barrier coatings with molten calcium-magnesium-alumino-silicate. Corrosion Science, 2022: 110069. |
[24] |
WU S J, CHENG L F, ZHANG L T, et al. Corrosion of SiC/SiC composite in Na2SO4 vapor environments from 1000 ℃ to 1500 ℃. Composites Part A: Applied Science and Manufacturing, 2006, 37(9): 1396-1401.
DOI URL |
[25] |
KOSIENIAK E, BIESIADA K, KACZOROWSKI J, et al. Corrosion failures in gas turbine hot components. Journal of Failure Analysis and Prevention, 2012, 12(3): 330-337.
DOI URL |
[26] |
JACOBSON N S. Kinetics and mechanism of corrosion of SiC by molten salts. Journal of the American Ceramic Society, 1986, 69(1): 74-82.
DOI URL |
[27] |
HERWEYER L A, OPILA E J. High-temperature Na2SO4 interaction with air plasma sprayed Yb2Si2O7+Si EBC system: Topcoat behavior. Journal of the American Ceramic Society, 2021, 104(12): 6496-6507.
DOI URL |
[28] |
LI L, LU J, LIU X Z, et al. AlxCoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4+25% NaCl at 900 ℃. Corrosion Science, 2021, 187: 109479.
DOI URL |
[29] |
HAGAN J M, OPILA E J. High-temperature Na2SO4 deposit- assisted corrosion of silicon carbide-I: temperature and time dependence. Journal of the American Ceramic Society, 2015, 98(4): 1275-1284.
DOI URL |
[30] |
SUN Z Q, LI M S, ZHOU Y C. Kinetics and mechanism of hot corrosion of γ-Y2Si2O7 in thin-film Na2SO4 molten salt. Journal of the American Ceramic Society, 2008, 91(7): 2236-2242.
DOI URL |
[31] |
FAN X Y, SUN R J, DONG J, et al. Effects of sintering additives on hot corrosion behavior of γ-Y2Si2O7 ceramics in Na2SO4+V2O5 molten salt. Journal of the European Ceramic Society, 2021, 41(1): 517-525.
DOI URL |
[32] |
LATSHAW A M, YEON J, SMITH M D, et al. Synthesis, structure, and polymorphism of A3LnSi2O7 (A=Na, K; Ln=Sm, Ho, Yb). Journal of Solid State Chemistry, 2016, 235: 100-106.
DOI URL |
[33] |
LATSHAW A M, WILKINS B O, CHANCE W M, et al. Influence of rare earth cation size on the crystal structure in rare earth silicates, Na2RESiO4 (OH) (RE=Sc, Yb) and NaRESiO4 (RE=La, Yb). Solid State Sciences, 2016, 51: 59-65.
DOI URL |
[34] |
JONNALAGADDA K P, MAHADE S, KRAMER S, et al. Failure of multilayer suspension plasma sprayed thermal barrier coatings in the presence of Na2SO4 and NaCl at 900 ℃. Journal of Thermal Spray Technology, 2019, 28(1): 212-222.
DOI URL |
[35] | 蒋凤瑞. B1-xSxAS及稀土硅酸盐环境障碍涂层热腐蚀性能研究. 西安: 西北工业大学博士学位论文, 2017. |
[1] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[2] | LI Jie, LUO Zhixin, CUI Yang, ZHANG Guangheng, SUN Luchao, WANG Jingyang. CMAS Corrosion Resistance of Y3Al5O12/Al2O3 Ceramic Coating Deposited by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2024, 39(6): 671-680. |
[3] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[4] | LUO Shuwen, MA Mingsheng, LIU Feng, LIU Zhifu. Corrosion Behavior and Mechanism of LTCC Materials in Ca-B-Si System [J]. Journal of Inorganic Materials, 2023, 38(5): 553-560. |
[5] | FAN Dong, ZHONG Xin, WANG Yawen, ZHANG Zhenzhong, NIU Yaran, LI Qilian, ZHANG Le, ZHENG Xuebin. Corrosion Behavior and Mechanism of Aluminum-rich CMAS on Rare-earth Silicate Environmental Barrier Coatings: [J]. Journal of Inorganic Materials, 2023, 38(5): 544-552. |
[6] | SUN Luchao, REN Xiaomin, DU Tiefeng, LUO Yixiu, ZHANG Jie, WANG Jingyang. High Entropy Engineering: New Strategy for the Critical Property Optimizations of Rare Earth Silicates [J]. Journal of Inorganic Materials, 2021, 36(4): 339-346. |
[7] | ZHANG Xiao-Feng, ZHOU Ke-Song, LIU Min, DENG Chun-Ming, NIU Shao-Peng, XU Shi-Ming. Preparation of Si/Mullite/Yb2SiO5 Environment Barrier Coating (EBC) by Plasma Spray-Physical Vapor Deposition (PS-PVD) [J]. Journal of Inorganic Materials, 2018, 33(3): 325-330. |
[8] | ZHANG Xiao-Feng, ZHOU Ke-Song, SONG Jin-Bing, DENG Chun-Ming, NIU Shao-Peng, DENG Zi-Qian. Deposition and CMAS Corrosion Mechanism of 7YSZ Thermal Barrier Coatings Prepared by Plasma Spray-Physical Vapor Deposition [J]. Journal of Inorganic Materials, 2015, 30(3): 287-293. |
[9] | LU Lin-Jing, CHENG Lai-Fei, HONG Zhi-Liang, WANG Yi-Guang, ZHANG Li-Tong. Fabrication and Water-vapor Corrosion Resistance of Ba0.25Sr0.75Al2Si2O8 Environmental Barrier Coating [J]. Journal of Inorganic Materials, 2011, 26(7): 701-706. |
[10] | WU Jiang,LIN Hong,LI Jian-Bao,LI Jun-Feng. Corrosion Behavior of AlNbO4/Mullite Composite as Environmental Barrier Coating in Water Vapor Environment [J]. Journal of Inorganic Materials, 2010, 25(4): 445-448. |
[11] | HONG Zhi-Liang,CHENG Lai-Fei,LU Lin-Jing,ZHANG Li-Tong,WANG Yi-Guang. Corrosion Behavior of Lu-Si-O System in Water Vapor [J]. Journal of Inorganic Materials, 2010, 15(2): 186-190. |
[12] | CHEN Xian-Hong,CHENG Lai-Fei,WANG Yi-Guang,ZHANG Li-Tong,HONG Zhi-Liang,WU Ya-Hui. Corrosion Behavior of AlPO4 as Environmental Barrier Coating in Water Vapor Enviroment [J]. Journal of Inorganic Materials, 2009, 24(2): 397-401. |
[13] |
GUAN Yong-Jun,XIA Yuan.
Electrochemical Impedance Spectroscopy of PEO Coating on Aluminum Alloy in NaCl Solution [J]. Journal of Inorganic Materials, 2008, 23(4): 784-788. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||