Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (11): 1151-1169.DOI: 10.15541/jim20220194
Special Issue: 【生物材料】肿瘤治疗
• REVIEW • Previous Articles Next Articles
HUANG Hui1,2(), CHEN Yu1,2,3()
Received:
2022-04-04
Revised:
2022-05-02
Published:
2022-11-20
Online:
2022-06-16
Contact:
CHEN Yu, professor. E-mail: chenyuedu@shu.edu.cnAbout author:
HUANG Hui (1994-), female, PhD candidate. E-mail: huanghuiscu@sina.com
Supported by:
CLC Number:
HUANG Hui, CHEN Yu. Materdicine and Medmaterial[J]. Journal of Inorganic Materials, 2022, 37(11): 1151-1169.
Fig. 1 Medmaterials for magnetic resonance imaging [33,35] (a) T1-weighted magnetic resonance imaging of tumor-bearing mice after intravenous injection of Mn-based nanomaterials; (b) T2-weighted magnetic resonance imaging of tumor-bearing mice after intravenous injection of iron oxide-based nanomaterials
Fig. 2 Medmaterials for computed tomography imaging [43-44] (a) Computed tomography imaging in vivo before and after intravenous administration of W1.33C nanosheets; (b) Signal intensities of computed tomography imaging and corresponding coronal plane images (inset) before and after intravenous administration; (c) In vivo computed tomography images of tumor-bearing mice before and after injection of copper/manganese silicate nanosphere-coated lanthanide-doped nanoparticles. HU: Hounsfield unit
Fig. 3 Medmaterials for photothermal therapy against cancer[55] Scheme illustrating the NbS2 nanosheets-based photothermal tumor therapy in the first near-infrared and second near-infrared biowindows. PVP: Polyvinyl pyrrolidone
Fig. 4 Medmaterials for photodynamic therapy against cancer[61] Schematic representation of the exogenous irradiation-free photosynthetic bacteria-based system for photodynamic tumor therapy. PDT: Photodynamic therapy; HIF: Hypoxia inducible factor; VEGF: Vascular endothelial growth factor
Fig. 5 Medmaterials for tumor sonodynamic therapy [62] Scheme of the underlying therapeutic mechanism of sonodynamic therapy-based ferroptosis-targeting. NCOA4: Nuclear receptor coactivator 4; US: Ultrasound; SDT: Sonodynamic therapy; PpIX: Protoporphyrin IX; DMT1: Divalent metal transporter 1; STEAPS: Six-transmembrane epithelial antigen of the prostate
Fig. 6 Medmaterials for tumor immunotherapy[63] Scheme demonstrating the mechanism of chemoimmunotherapeutic approach for inhibiting tumor growth and metastasis M1: M1-like macrophages; M2: M2-like macrophages; MDSC: Myeloid-derived suppressor cells; IPI549: Selective PI3Kγ inhibitor verified in multiple tumor models; DC: Dendritic cells; CTL: Cytotoxic T lymphocytes
Fig. 7 Medmaterials for tumor synergistic therapy[74-75] (a) Scheme illustrating the function of GA-Fe(II)/DOX@liposome for reversing drug resistance by ultrasound-augmented nanocatalytic ferroptosis; (b) Schematic illustration of the synergistic enhancement of chemodynamic and sonodynamic therapy mediated by TiO2-Fe3O4 Janus nanosonosensitizers. LPO: Lipid peroxidation; GA: Gallic acid; US: Ultrasound; SDT: Sonodynamic therapy; CDT: Chemodynamic therapy
Fig. 8 Medmaterials for theranostics of ROS-scavenging related diseases and acute kidney injury [101-102] (a) Scheme indicating ROS-scavenging activities of V2C MXene with multiple enzyme-like natures; (b) Scheme representing CaPB nanozymes in the acute kidney injury treatment. ROS: Reactive oxygen species; MXene: Transition metal carbides, carbonitrides and nitrides; GPx4: Glutathione peroxidase 4; ACSL4: Acyl-CoA synthetase long chain family member 4; PTGS2: Prostaglandin-endoperoxide synthase 2; RONS: Reactive oxygen and nitrogen species
Fig. 9 Medmaterials for biosensing[111] Scheme illustrating detection workflow of SARS-CoV-2 using the electrochemical biosensor RCA: Rolling circle amplification; CP MNB: Capture probe-conjugated magnetic bead particle; SiMB: Silica with a redox-dye layer; RP: Reporter probe
Fig. 10 Medmaterials for antibacterial applications[118] (a) Crystal structure of Ti3C2/Bi2S3; (b) Schematic illustration of the antibacterial mechanism of Ti3C2/Bi2S3 under 808 nm laser irradiation
[1] |
MALEKJAHANI A, SINDHWANI S, SYED A M, et al. Engineering steps for mobile point-of-care diagnostic devices. Accounts of Chemical Research, 2019, 52(9): 2406-2414.
DOI PMID |
[2] |
HE H, LIU L, MORIN E E, et al. Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Accounts of Chemical Research, 2019, 52(9): 2445-2461.
DOI URL |
[3] | HUANG H, FENG W, CHEN Y, et al. Inorganic nanoparticles in clinical trials and translations. Nano Today, 2020, 35: 100972-24. |
[4] |
HUANG H, FENG W, CHEN Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chemical Society Reviews, 2021, 50(20): 11381-11485.
DOI PMID |
[5] |
PELAZ B, ALEXIOU C H, ALVAREZ-PUEBLA R A, et al. Diverse applications of nanomedicine. ACS Nano, 2017, 11(3): 2313-2381.
DOI PMID |
[6] |
BURDA C, CHEN X, NARAYANAN R, et al. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105(4): 1025-1102.
PMID |
[7] |
XIANG H, CHEN Y. Materdicine: interdiscipline of materials and medicine. VIEW, 2020, 1(3): 20200016-29.
DOI URL |
[8] |
SHI J J, KANTOFF P W, WOOSTER R, et al. Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 2017, 17(1): 20-37.
DOI PMID |
[9] |
IRBY D, DU C, LI F. Lipid-drug conjugate for enhancing drug delivery. Molecular Pharmaceutics, 2017, 14(5): 1325-1338.
DOI PMID |
[10] |
MURA S, NICOLAS J, COUVREUR P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 2013, 12(11): 991-1003.
DOI PMID |
[11] |
NICOLAS J, MURA S, BRAMBILLA D, et al. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chemical Society Reviews, 2013, 42(3): 1147-1235.
DOI PMID |
[12] |
KUNJACHAN S, EHLING J, STORM G, et al. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chemical Reviews, 2015, 115(19): 10907-10937.
DOI PMID |
[13] |
CHEN H M, ZHANG W Z, ZHU G Z, et al. Rethinking cancer nanotheranostics. Nature Reviews Materials, 2017, 2(7): 17024-18.
DOI URL |
[14] |
WANG C, HUANG W, ZHOU Y, et al. 3D printing of bone tissue engineering scaffolds. Bioactive Materials, 2020, 5(1): 82-91.
DOI PMID |
[15] | KAUR B, KUMAR S, KAUSHIK B K. Recent advancements in optical biosensors for cancer detection. Biosensors and Bioelectronics, 2022, 197: 113805-11. |
[16] |
HUH A J, KWON Y J. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 2011, 156(2): 128-145.
DOI URL |
[17] |
DUAN Y, LIU B. Recent advances of optical imaging in the second near-infrared window. Advanced Materials, 2018, 30(47): 1802394-19.
DOI URL |
[18] |
HUANG L Y, ZHU S, CUI R, et al. Noninvasive in vivo imaging in the second near-infrared window by inorganic nanoparticle-based fluorescent probes. Analytical Chemistry, 2019, 92(1): 535-542.
DOI URL |
[19] |
LIN H, GAO S, DAI C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 2017, 139(45): 16235-16247.
DOI PMID |
[20] |
YANG Q, HU Z, ZHU S, et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. Journal of the American Chemical Society, 2018, 140(5): 1715-1724.
DOI PMID |
[21] |
YANG H C, LI R F, ZHANG Y J, et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window. Journal of the American Chemical Society, 2021, 143(6): 2601-2607.
DOI PMID |
[22] | FAN Y, WANG S, ZHANG F. Optical multiplexed bioassays for improved biomedical diagnostics. Angewandte Chemie International Edition, 2019, 131(38): 13342-13353. |
[23] |
WELSHER K, LIU Z, SHERLOCK SP, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotechnology, 2009, 4(11): 773-780.
DOI PMID |
[24] |
CHANG B, LI D, REN Y, et al. A phosphorescent probe for in vivo imaging in the second near-infrared window. Nature Biomedical Engineering, 2022, 6(6): 629-639.
DOI URL |
[25] |
WANG Q, LIANG Z, LI F, et al. Dynamically switchable magnetic resonance imaging contrast agents. Exploration, 2021, 1(2): 20210009-8.
DOI URL |
[26] |
KIM D, KIM J, PARK Y I, et al. Recent development of inorganic nanoparticles for biomedical imaging. ACS Central Science, 2018, 4(3): 324-336.
DOI PMID |
[27] |
XU Z, LIU C, ZHAO S, et al. Molecular sensors for NMR-based detection. Chemical Reviews, 2018, 119(1): 195-230.
DOI URL |
[28] |
CHO M H, SHIN S H, PARK S H, et al. Targeted, stimuli-responsive, and theranostic 19F magnetic resonance imaging probes. Bioconjugate Chemistry, 2019, 30(10): 2502-2518.
DOI URL |
[29] |
ZHAO X, DUAN G, WU K, et al. Intelligent metamaterials based on nonlinearity for magnetic resonance imaging. Advanced Materials, 2019, 31(49): 1905461-7.
DOI URL |
[30] |
DELCASSIAN D, LUZHANSKY I, SPANOUDAKI V, et al. Magnetic retrieval of encapsulated beta cell transplants from diabetic mice using dual-function MRI visible and retrievable microcapsules. Advanced Materials, 2020, 32(16): 1904502-10.
DOI URL |
[31] |
ZHANG J, YUAN Y, GAO M, et al. Carbon dots as a new class of diamagnetic chemical exchange saturation transfer (diacest) MRI contrast agents. Angewandte Chemie International Edition, 2019, 58(29): 9871-9875.
DOI URL |
[32] |
ZHANG P, HOU Y, ZENG J, et al. Coordinatively unsaturated Fe3+ based activatable probes for enhanced MRI and therapy of tumors. Angewandte Chemie International Edition, 2019, 58(32): 11088- 11096.
DOI URL |
[33] |
DAI C, CHEN Y, JING X X, et al. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging- guided photothermal tumor ablation. ACS Nano, 2017, 11(12): 12696-12712.
DOI URL |
[34] |
DAI C, LIN H, XU G, et al. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chemistry of Materials, 2017, 29(20): 8637-8652.
DOI URL |
[35] |
LIU Z, LIN H, ZHAO M L, et al. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics. Theranostics, 2018, 8(6): 1648-1664.
DOI PMID |
[36] |
LIU Z, ZHAO M L, LIN H, et al. 2D magnetic titanium carbide MXene for cancer theranostics. Journal of Materials Chemistry B, 2018, 6(21): 3541-3548.
DOI PMID |
[37] | CAO Y, WU T, ZHANG K, et al. Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano, 2019, 13(2): 1499-1510. |
[38] |
BAR-ZION A, NOURMAHNAD A, MITTELSTEIN D R, et al. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nature Nanotechnology, 2021, 16(12): 1403-1412.
DOI URL |
[39] |
LIU Y, BHATTARAI P, DAI Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48(7): 2053-2108.
DOI URL |
[40] |
LI X, CAI Z, JIANG L P, et al. Metal-ligand coordination nanomaterials for biomedical imaging. Bioconjugate Chemistry, 2019, 31(2): 332-339.
DOI URL |
[41] |
MENG Z, ZHOU X, SHE J, et al. Ultrasound-responsive conversion of microbubbles to nanoparticles to enable background-free in vivo photoacoustic imaging. Nano Letters, 2019, 19(11): 8109-8117.
DOI URL |
[42] |
CHEN Y S, ZHAO Y, YOON S J, et al. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nature Nanotechnology, 2019, 14(5): 465-472.
DOI URL |
[43] |
KIM J, CHHOUR P, HSU J, et al. Use of nanoparticle contrast agents for cell tracking with computed tomography. Bioconjugate Chemistry, 2017, 28(6): 1581-1597.
DOI PMID |
[44] |
ZHOU B G, YIN H H, DONG C H, et al. Biodegradable and excretable 2D W1.33C i-MXene with vacancy ordering for theory- oriented cancer nanotheranostics in near-infrared biowindow. Advanced Science, 2021, 8(24): 2101043-13.
DOI URL |
[45] |
XU J, SHI R, CHEN G, et al. All-in-one theranostic nanomedicine with ultrabright second near-infrared emission for tumor- modulated bioimaging and chemodynamic/photodynamic therapy. ACS Nano, 2020, 14(8): 9613-9625.
DOI URL |
[46] |
JUNG H S, VERWILST P, SHARMA A, et al. Organic molecule- based photothermal agents: an expanding photothermal therapy universe. Chemical Society Reviews, 2018, 47(7): 2280-2297.
DOI URL |
[47] | WANG H, CHANG J, SHI M, et al. A dual-targeted organic photothermal agent for enhanced photothermal therapy. Angewandte Chemie International Edition, 2019, 131(4): 1069-1073. |
[48] |
YU Z, HU W, ZHAO H, et al. Generating new cross-relaxation pathways by coating prussian blue on NaNdF4 to fabricate enhanced photothermal agents. Angewandte Chemie International Edition, 2019, 58(25): 8536-8540.
DOI URL |
[49] |
JIANG Y, LI J, ZHEN X, et al. Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study. Advanced Materials, 2018, 30(14): 1705980-7.
DOI URL |
[50] | ZHEN X, XIE C, PU K. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angewandte Chemie International Edition, 2018, 130(15): 4002-4006. |
[51] |
SMITH A M, MANCINI M C, NIE S. Second window for in vivo imaging. Nature Nanotechnology, 2009, 4(11): 710-711.
DOI URL |
[52] |
ZHOU J, JIANG Y, HOU S, et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared II window. ACS Nano, 2018, 12(3): 2643-2651.
DOI PMID |
[53] |
CHENG Y, YANG F, XIANG G, et al. Ultrathin tellurium oxide/ ammonium tungsten bronze nanoribbon for multimodality imaging and second near-infrared region photothermal therapy. Nano Letters, 2019, 19(2): 1179-1189.
DOI URL |
[54] |
CUI J, JIANG R, GUO C, et al. Fluorine grafted Cu7S4-Au heterodimers for multimodal imaging guided photothermal therapy with high penetration depth. Journal of the American Chemical Society, 2018, 140(18): 5890-5894.
DOI URL |
[55] |
SUN S, SONG Y, CHEN J, et al. NIR-I and NIR-II irradiation tumor ablation using NbS2 nanosheets as the photothermal agent. Nanoscale, 2021, 13(43): 18300-18310.
DOI URL |
[56] |
XIANG H J, CHEN Y. Energy-converting nanomedicine. Small, 2019, 15(13): 1805339-31.
DOI URL |
[57] |
HU H, QIAN X Q, CHEN Y. Microalgae-enabled photosynthetic alleviation of tumor hypoxia for enhanced nanotherapies. Science Bulletin, 2020, 65(22): 1869-1871.
DOI URL |
[58] |
CHEN B D, XIANG H J, PAN S S, et al. Advanced theragenerative biomaterials with therapeutic and regeneration multifunctionality. Advanced Functional Materials, 2020, 30(34): 2002621-27.
DOI URL |
[59] |
FENG W, CHEN Y. Chemoreactive nanomedicine. Journal of Materials Chemistry B, 2020, 8(31): 6753-6764.
DOI PMID |
[60] |
LUCKY S S, SOO K C, ZHANG Y. Nanoparticles in photodynamic therapy. Chemical Reviews, 2015, 115(4): 1990-2042.
DOI PMID |
[61] | CHANG M, FENG W, DING L, et al. Persistent luminescence phosphor as in-vivo light source for tumoral cyanobacterial photosynthetic oxygenation and photodynamic therapy. Bioactive Materials, 2022, 10: 131-144. |
[62] | ZHOU L, DONG C, DING L, et al. Targeting ferroptosis synergistically sensitizes apoptotic sonodynamic anti-tumor nanotherapy. Nano Today, 2021, 39: 101212-12. |
[63] |
SHEN Y, CHEN L, GUAN X, et al. Tailoring chemoimmunostimulant bioscaffolds for inhibiting tumor growth and metastasis after incomplete microwave ablation. ACS Nano, 2021, 15(12): 20414-20429.
DOI PMID |
[64] |
MELLMAN I, COUKOS G, DRANOFF G. Cancer immunotherapy comes of age. Nature, 2011, 480(7378): 480-489.
DOI URL |
[65] |
RIBAS A, WOLCHOK J D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382): 1350-1355.
DOI URL |
[66] |
MAHONEY K M, RENNERT P D, FREEMAN G J. Combination cancer immunotherapy and new immunomodulatory targets. Nature Reviews Drug Discovery, 2015, 14(8): 561-584.
DOI PMID |
[67] |
VANNEMAN M, DRANOFF G. Combining immunotherapy and targeted therapies in cancer treatment. Nature Reviews Cancer, 2012, 12(4): 237-251.
DOI PMID |
[68] |
SANG W, ZHANG Z, DAI Y, et al. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chemical Society Reviews, 2019, 48(14): 3771-3810.
DOI PMID |
[69] |
SHIELDS IV CW, WANG L W, EVANS M A, et al. Materials for immunotherapy. Advanced Materials, 2020, 32(13): 1901633-56.
DOI URL |
[70] |
NAM J, SON S, PARK K S, et al. Cancer nanomedicine for combination cancer immunotherapy. Nature Reviews Materials, 2019, 4(6): 398-414.
DOI |
[71] | SONG W, MUSETTI S N, HUANG L. Nanomaterials for cancer immunotherapy. Biomaterials, 2017, 148: 16-30. |
[72] |
CHEUNG A S, MOONEY D J. Engineered materials for cancer immunotherapy. Nano Today, 2015, 10(4): 511-531.
PMID |
[73] |
LIU Y, WANG L, SONG Q, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti- PD-L1 therapy for malignant pleural effusion. Nature Nanotechnology, 2022, 17(2): 206-216.
DOI URL |
[74] |
ZHENG Y, LI X, DONG C, et al. Ultrasound-augmented nanocatalytic ferroptosis reverses chemotherapeutic resistance and induces synergistic tumor nanotherapy. Advanced Functional Materials, 2022, 32(4): 2107529-17.
DOI URL |
[75] |
XU W, DONG C, HU H, et al. Engineering Janus chemoreactive nanosonosensitizers for bilaterally augmented sonodynamic and chemodynamic cancer nanotherapy. Advanced Functional Materials, 2021, 31(37): 2103134-13.
DOI URL |
[76] | XIANG H, YOU C, LIU W, et al. Chemotherapy-enabled /augmented cascade catalytic tumor-oxidative nanotherapy. Biomaterials, 2021, 277: 121071-12. |
[77] |
WANG H X, LI M, LEE C M, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chemical Reviews, 2017, 117(15): 9874-9906.
DOI URL |
[78] |
LYU Y, HE S S, LI J C, et al. A photolabile semiconducting polymer nanotransducer for near-infrared regulation of CRISPR/ Cas9 gene editing. Angewandte Chemie International Edition, 2019, 58(50): 18197-18201.
DOI URL |
[79] |
CHENG Q, WEI T, FARBIAK L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nature Nanotechnology, 2020, 15(4): 313-320.
DOI PMID |
[80] |
YIN H, ZHOU B, DONG C, et al. CRISPR/Cas9-2D silicene gene-editing nanosystem for remote NIR-II-induced tumor microenvironment reprogramming and augmented photonic tumor ablation. Advanced Functional Materials, 2021, 31(50): 2107093-12.
DOI URL |
[81] |
YIN H, SUN L, PU Y, et al. Ultrasound-controlled CRISPR/Cas9 system augments sonodynamic therapy of hepatocellular carcinoma. ACS Central Science, 2021, 7(12): 2049-2062.
DOI PMID |
[82] |
LI M, MA H, HAN F, et al. Microbially catalyzed biomaterials for bone regeneration. Advanced Materials, 2021, 33(49): 2104829-13.
DOI URL |
[83] | ZHOU Y, WU C, CHANG J. Bioceramics to regulate stem cells and their microenvironment for tissue regeneration. Materials Today, 2019, 24: 41-56. |
[84] |
LI T, CHANG J, ZHU Y, et al. 3D printing of bioinspired biomaterials for tissue regeneration. Advanced Healthcare Materials, 2020, 9(23): 2000208-17.
DOI URL |
[85] | STEVENS M M. Biomaterials for bone tissue engineering. Materials Today, 2008, 11(5): 18-25. |
[86] |
DISCHER D E, MOONEY D J, ZANDSTRA P W. Growth factors, matrices, and forces combine and control stem cells. Science, 2009, 324(5935): 1673-1677.
DOI URL |
[87] |
GEIGER B, SPATZ J P, BERSHADSKY A D. Environmental sensing through focal adhesions. Nature Reviews Molecular Cell Biology, 2009, 10(1): 21-33.
DOI PMID |
[88] |
WANG L, YANG Q, HUO M, et al. Engineering single-atomic iron-catalyst-integrated 3D-printed bioscaffolds for osteosarcoma destruction with antibacterial and bone defect regeneration bioactivity. Advanced Materials, 2021, 33(31): 2100150-12.
DOI URL |
[89] |
SOMMARIVA M, LE NOCI V, BIANCHI F, et al. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cellular and Molecular Life Sciences, 2020, 77(14): 2739-2749.
DOI PMID |
[90] |
YANG W, PETERS J I, WILLIAMS R O. Inhaled nanoparticles-a current review. International Journal of Pharmaceutics, 2008, 356(1): 239-247.
DOI URL |
[91] |
MYERSON J W, PATEL P N, RUBEY K M, et al. Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nature Nanotechnology, 2022, 17(1): 86-97.
DOI URL |
[92] | VASARMIDI E, TSITOURA E, SPANDIDOS D A, et al. Pulmonary fibrosis in the aftermath of the COVID-19 era. Experimental and Therapeutic Medicine, 2020, 20(3): 2557-2560. |
[93] |
CRISAN-DABIJA R, PAVEL C A, POPA I V, et al. “A chain only as strong as its weakest link”: an up-to-date literature review on the bidirectional interaction of pulmonary fibrosis and COVID-19. Journal of Proteome Research, 2020, 19(11): 4327-4338.
DOI URL |
[94] |
LEDERER D J, MARTINEZ F J. Idiopathic pulmonary fibrosis. New England Journal of Medicine, 2018, 378(19): 1811-1823.
DOI URL |
[95] |
RICHELDI L, COLLARD H R, JONES M G. Idiopathic pulmonary fibrosis. Lancet, 2017, 389(10082): 1941-1952.
DOI PMID |
[96] | MERKT W, BUENO M, MORA AL, et al. Senotherapeutics: targeting senescence in idiopathic pulmonary fibrosis. Seminars in Cell & Developmental Biology, 2020, 101: 104-110. |
[97] | MALSIN E S, KAMP D W. The mitochondria in lung fibrosis: Friend or foe? Translational Research, 2018, 202: 1-23. |
[98] |
YU G, TZOUVELEKIS A, WANG R, et al. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nature Medicine, 2018, 24(1): 39-49.
DOI PMID |
[99] | SALEH J, PEYSSONNAUX C, SINGH K K, et al. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion, 2020, 54: 1-7. |
[100] |
HUANG T, ZHANG T, JIANG X, et al. Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Science Advances, 2021, 7(40): eabj0534-15.
DOI URL |
[101] |
FENG W, HAN X G, HU H, et al. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nature Communications, 2021, 12(1): 2203-16.
DOI PMID |
[102] |
WANG K, ZHANG Y, MAO W, et al. Engineering ultrasmall ferroptosis-targeting and reactive oxygen/nitrogen species- scavenging nanozyme for alleviating acute kidney injury. Advanced Functional Materials, 2022, 32(10): 2109221-13.
DOI URL |
[103] |
TANG Z, HUO M, JU Y, et al. Nanoprotection against retinal pigment epithelium degeneration via ferroptosis inhibition. Small Methods, 2021, 5(12): 2100848-14.
DOI URL |
[104] |
WU J, YUK H, SARRAFIAN TIFFANY L, et al. An off-the-shelf bioadhesive patch for sutureless repair of gastrointestinal defects. Science Translational Medicine, 14(630): eabh2857-13.
DOI URL |
[105] |
KIM S J, CHOI S J, JANG J S, et al. Innovative nanosensor for disease diagnosis. Accounts of Chemical Research, 2017, 50(7): 1587-1596.
DOI URL |
[106] |
TANG Z M, KONG N, ZHANG X C, et al. A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5(11): 847-860.
DOI URL |
[107] |
FAROKHZAD N, TAO W. Materials chemistry-enabled platforms in detecting sexually transmitted infections: progress towards point-of-care tests. Trends in Chemistry, 2021, 3(7): 589-602.
DOI URL |
[108] |
GONG M M, SINTON D. Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chemical Reviews, 2017, 117(12): 8447-8480.
DOI PMID |
[109] |
HUANG X, LIU Y, YUNG B, et al. Nanotechnology-enhanced no-wash biosensors for in vitro diagnostics of cancer. ACS Nano, 2017, 11(6): 5238-5292.
DOI URL |
[110] |
WANG C, QI B, LIN M, et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nature Biomedical Engineering, 2021, 5(7): 749-758.
DOI PMID |
[111] |
CHAIBUN T, PUENPA J, NGAMDEE T, et al. Rapid electrochemical detection of coronavirus SARS-Cov-2. Nature Communications, 2021, 12(1): 802-10.
DOI PMID |
[112] |
GATES B. Responding to COVID-19-a once-in-a-century pandemic? New England Journal of Medicine, 2020, 382(18): 1677-1679.
DOI URL |
[113] |
LAURING A S, FRYDMAN J, ANDINO R. The role of mutational robustness in RNA virus evolution. Nature Reviews Microbiology, 2013, 11(5): 327-336.
DOI PMID |
[114] |
SEO G, LEE G, KIM M J, et al. Rapid detection of COVID-19 causative virus (SARS-Cov-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4): 5135-5142.
DOI PMID |
[115] |
XIAO G, HE J, CHEN X, et al. A wearable, cotton thread/paper- based microfluidic device coupled with smartphone for sweat glucose sensing. Cellulose, 2019, 26(7): 4553-4562.
DOI URL |
[116] |
LI T, CHEN L, YANG X, et al. A flexible pressure sensor based on an MXene-textile network structure. Journal of Materials Chemistry C, 2019, 7(4): 1022-1027.
DOI |
[117] |
KALELKAR P P, RIDDICK M, GARCIA A J. Biomaterial-based antimicrobial therapies for the treatment of bacterial infections. Nature Reviews Materials, 2022, 7(1): 39-54.
DOI URL |
[118] |
LI J F, LI Z Y, LIU X M, et al. Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo- excited bacteria-killing. Nature Communications, 2021, 12(1): 1224-10.
DOI URL |
[119] |
DURÁN N, DURÁN M, DE JESUS MB, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology and Medicine, 2016, 12(3): 789-799.
DOI URL |
[120] |
PANÁČEK A, KVÍTEK L, SMÉKALOVÁ M, et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology, 2018, 13(1): 65-71.
DOI PMID |
[121] |
STABRYLA L M, JOHNSTON K A, DIEMLER N A, et al. Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nature Nanotechnology, 2021, 16(9): 996-1003.
DOI URL |
[122] |
LI B, WANG W, SONG W, et al. Antiviral and anti-inflammatory treatment with multifunctional alveolar macrophage-like nanoparticles in a surrogate mouse model of COVID-19. Advanced Science, 2021, 8(13): 2003556-14.
DOI URL |
[123] |
VALLIERES C, HOOK A L, HE Y, et al. Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration. Science Advances, 2020, 6(23): eaba6574-12.
DOI URL |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[11] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[12] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[13] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[14] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[15] | FENG Jingjing, ZHANG Youran, MA Mingsheng, LU Yiqing, LIU Zhifu. Current Status and Development Trend of Cold Sintering Process [J]. Journal of Inorganic Materials, 2023, 38(2): 125-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||