Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (7): 780-786.DOI: 10.15541/jim20210621
Special Issue: 【生物材料】骨骼与齿类组织修复(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
Received:
2021-10-07
Revised:
2021-11-24
Published:
2022-07-20
Online:
2021-12-16
Contact:
WANG Deping, professor. E-mail: wdpshk@tongji.edu.cnAbout author:
PANG Libin (1997-), male, PhD candidate. E-mail: panglibin@foxmail.com
Supported by:
CLC Number:
PANG Libin, WANG Deping. Drug Carrier Based on Mesoporous Borosilicate Glass Microspheres: Preparation and Performance[J]. Journal of Inorganic Materials, 2022, 37(7): 780-786.
Sample | SiO2/% | B2O3/% | P2O5/% | CaO/% |
---|---|---|---|---|
MBGMs-0B | 60 | 0 | 4 | 36 |
MBGMs-10B | 50 | 10 | 4 | 36 |
MBGMs-20B | 40 | 20 | 4 | 36 |
MBGMs-40B | 20 | 40 | 4 | 36 |
Table 1 Designed molar composition of MBGMs
Sample | SiO2/% | B2O3/% | P2O5/% | CaO/% |
---|---|---|---|---|
MBGMs-0B | 60 | 0 | 4 | 36 |
MBGMs-10B | 50 | 10 | 4 | 36 |
MBGMs-20B | 40 | 20 | 4 | 36 |
MBGMs-40B | 20 | 40 | 4 | 36 |
Sample | SiO2/% | B2O3/% | P2O5/% | CaO/% |
---|---|---|---|---|
MBGMs-0B | 88.3 | 0 | 0.4 | 11.3 |
MBGMs-10B | 58.8 | 33.2 | 0.3 | 7.8 |
MBGMs-20B | 45.0 | 47.3 | 0.2 | 7.5 |
MBGMs-40B | 33.6 | 57.3 | 0.3 | 8.8 |
Table 2 Molar composition of MBGMs calculated from EDS results
Sample | SiO2/% | B2O3/% | P2O5/% | CaO/% |
---|---|---|---|---|
MBGMs-0B | 88.3 | 0 | 0.4 | 11.3 |
MBGMs-10B | 58.8 | 33.2 | 0.3 | 7.8 |
MBGMs-20B | 45.0 | 47.3 | 0.2 | 7.5 |
MBGMs-40B | 33.6 | 57.3 | 0.3 | 8.8 |
Fig. 2 SEM images of MBGMs before (A-D) and after (A1-D1) being soaked in SBF for 3 d (A, A1) MBGMs-0B; (B, B1) MBGMs-10B; (C, C1) MBGMs-20B; (D, D1) MBGMs-40B.
Fig. 4 Nitrogen adsorption/desorption isotherms of MBGMs (A) and pore size distributions of MBGMs before (B) and after (C) being soaked in PBS (pH 5) for 3 d
Fig. 6 Releasing profile of DOX when MBGMs@DOX soaked in PBS with different pH (A) MBGMs-0B@DOX; (B) MBGMs-10B@DOX; (C) MBGMs-20B@DOX; (D) MBGMs-40B@DOX
[1] | YANG B, CHEN Y, SHI J. Mesoporous silica/organosilica nanoparticles: synthesis, biological effect and biomedical application. Mater Sci & Eng R: Reports, 2019, 137: 66-105. |
[2] |
CHENG W, NIE J, XU L, et al. pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl. Mater. Interf., 2017, 9(22): 18462-18473.
DOI URL |
[3] |
CHEN Y, SHI J. Chemistry of mesoporous organosilica in nanotechnology: molecularly organic-inorganic hybridization into frameworks. Adv. Mater., 2016, 28(17): 3235-3272.
DOI URL |
[4] |
NIU D, MA Z, LI Y, et al. Synthesis of core-shell structured dual- mesoporous silica spheres with tunable pore size and controllable shell thickness. J. Am. Chem. Soc., 2010, 132(43): 15144-15147.
DOI URL |
[5] | SHAO D, LI M, WANG Z, et al. Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery. Adv. Mater., 2018: e1801198. |
[6] |
HU H, TANG Y, PANG L, et al. Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/ poly(lactic-co-glycolic acid) dressing loaded with vitamin E in vivo and in vitro. ACS Appl. Mater. Interf., 2018, 10(27): 22939-22950.
DOI URL |
[7] |
QI X, WANG H, ZHANG Y, et al. Mesoporous bioactive glass- coated 3D printed borosilicate bioactive glass scaffolds for improving repair of bone defects. Int. J. Biol. Sci., 2018, 14(4): 471-484.
DOI URL |
[8] |
RABIEE S M, NAZPARVAR N, AZIZIAN M, et al. Effect of ion substitution on properties of bioactive glasses: a review. Ceram. Int., 2015, 41(6): 7241-7251.
DOI URL |
[9] |
ZHAO S, LI L, WANG H, et al. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials, 2015, 53: 379-391.
DOI URL |
[10] |
WANG H, ZHAO S, ZHOU J, et al. Evaluation of borate bioactive glass scaffolds as a controlled delivery system for copper ions in stimulating osteogenesis and angiogenesis in bone healing. J. Mater. Chem. B, 2014, 2(48): 8547-8557.
DOI URL |
[11] |
ZHENG K, DAI X, LU M, et al. Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications. Colloids Surf. B, 2017, 150: 159-167.
DOI URL |
[12] |
WANG H, ZHAO S C, ZHOU J, et al. Biocompatibility and osteogenic capacity of borosilicate bioactive glass scaffolds loaded with Fe3O4 magnetic nanoparticles. J. Mater. Chem. B, 2015, 3(21): 4377-4387.
DOI URL |
[13] |
ZHOU J, WANG H, ZHAO S, et al. In vivo and in vitro studies of borate based glass microfibers for dermal repairing. Mater. Sci. Eng. C: Mater. Biol. Appl., 2016, 60: 437-445.
DOI URL |
[14] |
MAO L, XIA L, CHANG J, et al. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater., 2017, 61: 217-232.
DOI URL |
[15] |
WANG X, CHENG F, LIU J, et al. Biocomposites of copper- containing mesoporous bioactive glass and nanofibrillated cellulose: biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomater., 2016, 46: 286-298.
DOI URL |
[16] |
TANG Z, LIU Y, HE M, et al. Chemodynamic therapy: tumour microenvironment-mediated fenton and fenton-like reactions. Angew. Chem. Int. Ed., 2019, 58(4): 946-956.
DOI URL |
[17] | JIA Q, GE J, LIU W, et al. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater., 2018, 30(13): e1706090. |
[18] |
LI H C, WANG D G, HU J H, et al. Effect of the partial substitution of K2O, MgO, B2O3 for CaO on crystallization, structure and properties of Na2O-CaO-SiO2-P2O5 system glass-ceramics. Mater. Lett., 2013, 106: 373-376.
DOI URL |
[19] |
BRINK M. The influence of alkali and alkaline earths on the working range for bioactive glasses. J. Biomed. Mater. Res., 1997, 36(1): 109-117.
DOI URL |
[20] |
ZHANG W, ZHAO F, HUANG D, et al. Strontium-substituted submicrometer bioactive glasses modulate macrophage responses for improved bone regeneration. ACS Appl. Mater. Interfaces., 2016, 8(45): 30747-30758.
DOI URL |
[1] | YUE Zihao, YANG Xiaotu, ZHANG Zhengliang, DENG Ruixiang, ZHANG Tao, SONG Lixin. Effect of Pb2+ on the Luminescent Performance of Borosilicate Glass Coated CsPbBr3 Perovskite Quantum Dots [J]. Journal of Inorganic Materials, 2024, 39(4): 449-456. |
[2] | LUO Shuwen, MA Mingsheng, LIU Feng, LIU Zhifu. Corrosion Behavior and Mechanism of LTCC Materials in Ca-B-Si System [J]. Journal of Inorganic Materials, 2023, 38(5): 553-560. |
[3] | ZHANG Xiao-Yang, PENG Hai-Bo, LIU Feng-Fei, ZHAO Yan, SUN Meng-Li, GUAN Ming, ZHANG Bing-Tao, DU Xin, YUAN Wei, WANG Tie-Shan. Mechanical Properties of Borosilicate Glass with Different Irradiation of Heavy Ions [J]. Journal of Inorganic Materials, 2019, 34(7): 741-747. |
[4] | MA Fang, CUI Ming-Fang, ZHU Jian-Hua, LI Ya-Li. Porous Hydroxyapatite Microspheres Prepared by Using Poly (Allylamine Hydrochloride) and Its Application in Drug Delivery [J]. Journal of Inorganic Materials, 2017, 32(11): 1215-1222. |
[5] | ZHU Kai-Ping, SUN Jing, YE Song, ZHOU Jie, WANG Hui, WANG De-Ping. A Novel Hollow Hydroxyapatite Microspheres/Chitosan Composite Drug Carrier for Controlled Release [J]. Journal of Inorganic Materials, 2016, 31(4): 434-442. |
[6] | YIN De-Wu, LIU Zhen, YANG Xin-Yu, ZHANG Xi-Yan, XIANG Wei-Dong. Preparation and Optical Properties of AgIn Alloy Quantum Dots Doped Glass [J]. Journal of Inorganic Materials, 2014, 29(10): 1034-1038. |
[7] | ZHAO Xiu-Li, LIANG Xiao-Juan, LUO Hong-Yan, CHEN Zhao-Ping, XIANG Wei-Dong. Third-order Nonlinear Optical Properties of Silver Quantum Dots Doped in Sodium Borosilicate Glass [J]. Journal of Inorganic Materials, 2013, 28(9): 1003-1008. |
[8] | YANG Xin-Yu, XIANG Wei-Dong, ZHANG Xi-Yan, LIU Hai-Tao, ZHAO Hai-Jun, LIANG Xiao-Juan. Study on the Third-order Optical Nonlinear Absorption Properties of Bi2O3 Nanocrystals Glass [J]. Journal of Inorganic Materials, 2012, 27(3): 317-322. |
[9] | YANG Xin-Yu, , XIANG Wei-Dong, , ZHAO Hai-Jun,ZHANG Xi-Yan, LIANG Xiao-Juan, LIU Hai-Tao. Third-order Nonlinear Optical Properties of Bi2S3 Nanocrystals Embedded inSodium Borosilicate Glass [J]. Journal of Inorganic Materials, 2011, 26(3): 290-294. |
[10] | ZHANG Xin,JIA Wei-Tao,GU Yi-Fei,ZHANG Chang-Qing,HUANG Wen-Hai,WANG De-Ping. Borate Bioglass Based Drug Delivery of Teicoplanin for Treating Osteomyelitis [J]. Journal of Inorganic Materials, 2010, 25(3): 293-298. |
[11] | LUO Ling-Hong,ZHOU He-Ping,PENG Rong,QIAO Liang. Low-T Sintering, Low-Dielectric Materials for High Frequency Multilayer Chip Inductors [J]. Journal of Inorganic Materials, 2002, 17(3): 497-503. |
[12] | WANG De-Ping,HUANG Wen-Hai,CHENG Tian-Dan. Preparation and in Vitro Drug Release Behavior Study of Porous Phosphate Glass Ceramic [J]. Journal of Inorganic Materials, 2001, 16(6): 1195-1198. |
[13] | CHEN Hongbing,ZHU Congshan,GAN Fuxi. Preparation and Electroinduced Second Order Nonlinear Optical Properties of CuI Microcrystal Doped Borosilicate Glasses [J]. Journal of Inorganic Materials, 1997, 12(4): 487-493. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||