Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (1): 15-21.DOI: 10.15541/jim20210480
Special Issue: 【能源环境】CO2绿色转换(202312)
• TOPICAL SECTION: Green Conversion of CO2 (Contributing Editor: OUYANG Shuxin, WANG Wenzhong) • Previous Articles Next Articles
LIU Peng(), WU Shimiao, WU Yunfeng, ZHANG Ning(
)
Received:
2021-07-29
Revised:
2021-08-17
Published:
2022-01-20
Online:
2021-09-27
Contact:
ZHANG Ning, associate professor. E-mail: nzhang@csu.edu.cn
About author:
LIU Peng (1999-), male, Master candidate. E-mail: 203112101@csu.edu.cn
Supported by:
CLC Number:
LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction[J]. Journal of Inorganic Materials, 2022, 37(1): 15-21.
Fig. 9 (a) CO evolution vs. irradiation time, (b) CO evolution rate, (c) H2 evolution vs. irradiation time, and (d) H2 evolution rate over Zn0.4(CuGa)0.3Ga2S4/CdS-4 : 1, Zn0.4(CuGa)0.3Ga2S4/CdS-2 : 1, Zn0.4(CuGa)0.3Ga2S4/CdS-1 : 1, Zn0.4(CuGa)0.3Ga2S4, and CdS Colorful figures are available on website
[1] |
CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488(7411):294-303.
DOI URL |
[2] | 霍景沛, 林冲, 陈桂煌 等. 光催化二氧化碳还原催化体系研究进展. 化学推进剂与高分子材料, 2020, 18(3):8-14. |
[3] |
LI K, PENG B S, PENG T Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels . ACS Catal, 2016, 6:7485-7527.
DOI URL |
[4] | 赵志强, 张贺, 焦畅, 等. 全球CCUS技术和应用现状分析. 现代化工, 2021, 41(4):5-10. |
[5] | 王冰, 赵美明, 周勇, 等. 光催化还原二氧化碳制备太阳燃料研究进展及挑战. 中国科学: 技术科学, 2017, 47(3):286-296. |
[6] |
MIKKELSEN M, JØRGENSEN M, KREBS F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy and Environmental Science, 2010, 3(1):43-81.
DOI URL |
[7] |
ARAI T, SATO S, KAJINO T, et al. Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes. Energy and Environmental Science, 2013, 6(4):1274-1282.
DOI URL |
[8] |
HASHIMOTO K, IRIE H, FUJISHIMA A. TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics, 2005, 44(12):8269-8285.
DOI URL |
[9] |
LONG R, LI Y, SONG L, et al. Coupling solar energy into reactions: materials design for surface plasmon-mediated catalysis. Small, 2015, 11(32):3873-3889.
DOI URL |
[10] | HUANG H, ZHOU J, ZHOU J, et al. Structure-retentive synthesis of a highly ordered mesoporous Nb2O5/N-doped graphene nanocomposite with superior interfacial contacts and improved visible- light photocatalysis. Catalysis Science & Technology, 2019, 9(13):3373-3379. |
[11] |
ZHANG H, CHEN Y, ZHU X, et al. Mn2+-doped Zn2GeO4 for photocatalysis hydrogen generation. International Journal of Energy Research, 2019, 43(9):5013-5019.
DOI URL |
[12] |
ZHANG J, LI W, LI Y, et al. Self-optimizing bifunctional CdS/Cu2S with coexistence of light-reduced CuO for highly efficient photocatalytic H2 generation under visible-light irradiation. Applied Catalysis B: Environmental, 2017, 217:30-36.
DOI URL |
[13] |
MANZI A, SIMON T, SONNLEITNER C, et al. Light-induced cation exchange for copper sulfide based CO2 reduction. Journal of the American Chemical Society, 2015, 137(44):14007-14010.
DOI URL |
[14] |
ZHAO M, HUANG F, LIN H, et al. CuGaS2-ZnS p-n nanoheterostructures: a promising visible light photo-catalyst for water-splitting hydrogen production. Nanoscale, 2016, 8(37):16670-16676.
DOI URL |
[15] |
KAGA H, KUDO A. Cosubstituting effects of copper(I) and gallium (III) for ZnGa2S4 with defect chalcopyrite structure on photocatalytic activity for hydrogen evolution. Journal of Catalysis, 2014, 310:31-36.
DOI URL |
[16] | 王宗鹏, 林志萍, 申士杰, 等. 异质结光催化材料的新进展. 催化学报, 2021, 42(5):710-730. |
[17] | 董虹星, 刘秋平, 贺跃辉. BiVO4基纳米异质结光催化材料的研究进展. 材料导报, 2018, 32(10):3358-3367. |
[18] |
SARKAR D, GHOSH C K, MUKHERJEE S, et al. Three dimensional Ag2O/TiO2 type-II (p-n) nanoheterojunctions for superior photocatalytic activity. ACS Applied Materials and Interfaces, 2013, 5(2):331-337.
DOI URL |
[19] |
WANG H, ZHANG L, CHEN Z, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43(15):5234-5244.
DOI URL |
[20] |
PANMAND R P, SETHI Y A, et al. In situ fabrication of highly crystalline CdS decorated Bi2S3 nanowires (nano-heterostructure) for visible light photocatalyst application. RSC Advances, 2016, 6:23508-23517.
DOI URL |
[21] |
GUO F, SHI W, LI M, et al. 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline. Separation and Purification Technology, 2019, 210:608-615.
DOI URL |
[22] |
TADA H, MITSUI T, KIYONAGA T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nature Materials, 2006, 5(10):782-786.
DOI URL |
[23] |
HE Y, ZHANG L, TENG B, et al. New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environmental Science & Technology, 2014, 49(1):649-656.
DOI URL |
[24] |
ZHOU Q, KANG S Z, LI X, et al. One-pot hydrothermal preparation of wurtzite CuGaS2 and its application as a photoluminescent probe for trace detection of l-noradrenaline. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465:124-129.
DOI URL |
[25] | LIANG Q, JIANG G, ZHAO Z, et al. CdS-decorated triptycene- based polymer: durable photocatalysts for hydrogen production under visible-light irradiation. Catalysis Science & Technology, 2015, 5(6):3368-3374. |
[26] |
WU S, PANG H, ZHOU W, et al. Stabilizing CuGaS2 by crystalline CdS through an interfacial Z-scheme charge transfer for enhanced photocatalytic CO2 reduction under visible light. Nanoscale, 2020, 12(16):8693-8700.
DOI URL |
[27] |
MA F, ZHAO G, LI C, et al. Fabrication of CdS/BNNSs nanocomposites with broadband solar absorption for efficient photocatalytic hydrogen evolution. CrystEngComm, 2016, 18(4):631-637.
DOI URL |
[28] |
ZHENG Z, ZHANG N, WANG T, et al. Ag1.69Sb2.27O6.25 coupled carbon nitride photocatalyst with high redox potential for efficient multifunctional environmental applications. Applied Surface Science, 2019, 487(March):82-90.
DOI URL |
[29] |
SIMON T, BOUCHONVILLE N, BERR M J, et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nature Materials, 2014, 13(11):1013-1018.
DOI URL |
[30] | 吴唯, 周勇, 刘尚军, 等. InAs量子点低温盖层对其发光特性的影响. 半导体光电, 2020, 41(1):89-92. |
[1] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[2] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[3] | WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383-389. |
[4] | WANG Xinling, ZHOU Na, TIAN Yawen, ZHOU Mingran, HAN Jingru, SHEN Yuansheng, HU Zhiyi, LI Yu. SnS2/ZIF-8 Derived Two-dimensional Porous Nitrogen-doped Carbon Nanosheets for Lithium-sulfur Batteries [J]. Journal of Inorganic Materials, 2023, 38(8): 938-946. |
[5] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[6] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[7] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. |
[8] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[9] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[10] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[11] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[12] | WANG Xiaojun, XU Wen, LIU Runlu, PAN Hui, ZHU Shenmin. Preparation and Properties of Ag@C3N4 Photocatalyst Supported by Hydrogel [J]. Journal of Inorganic Materials, 2022, 37(7): 731-740. |
[13] | CHEN Shikun, WANG Chuchu, CHEN Ye, LI Li, PAN Lu, WEN Guilin. Magnetic Ag2S/Ag/CoFe1.95Sm0.05O4 Z-scheme Heterojunction: Preparation and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(12): 1329-1336. |
[14] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[15] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||