Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 669-675.DOI: 10.15541/jim20210421
Special Issue: 【能源环境】钙钛矿(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
JIAO Boxin(), LIU Xingchong(), QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin
Received:
2021-07-05
Revised:
2021-09-18
Published:
2022-06-20
Online:
2021-09-27
Contact:
LIU Xingchong, associate professor. E-mail: Liuxc_76@163.comAbout author:
JIAO Boxin (1999–), male, Master candidate. E-mail: jiaoboxin21@mails.ucas.ac.cn
Supported by:
CLC Number:
JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine[J]. Journal of Inorganic Materials, 2022, 37(6): 669-675.
Fig. 3 (a) XRD patterns, (b) UV-Vis spectra, (c) FT-IR spectra, and (d) local amplification of (c) for undoped and doped perovskite films without and with L-arginine doping Colorful figures are available on website
Fig. 4 (a) PL spectra, (b) TRPL spectra and fitting resuLts of perovskite films with and without L-arginine doping Colorful figures are available on website
Fig. 5 (a) PCE box/normal distribution, (b) J-V curves, (c) IPCE and integral current density curves, and (d) forward and reverse scan J-V curves of PSCs with and without L-arginine doping Colorful figures are available on website
Concentration/ (mg·L-1) | JSC/(mA·cm-2) | VOC/V | FF/% | PCE/% |
---|---|---|---|---|
0 | 21.80 | 1.119 | 77.1 | 18.81 |
40 | 22.20 | 1.121 | 77.0 | 19.15 |
60 | 22.55 | 1.131 | 78.6 | 20.03 |
80 | 23.68 | 1.143 | 80.8 | 21.86 |
100 | 22.74 | 1.131 | 79.4 | 20.42 |
Table 1 Photoelectric parameters of PSCs doped with different concentrations of L-arginine
Concentration/ (mg·L-1) | JSC/(mA·cm-2) | VOC/V | FF/% | PCE/% |
---|---|---|---|---|
0 | 21.80 | 1.119 | 77.1 | 18.81 |
40 | 22.20 | 1.121 | 77.0 | 19.15 |
60 | 22.55 | 1.131 | 78.6 | 20.03 |
80 | 23.68 | 1.143 | 80.8 | 21.86 |
100 | 22.74 | 1.131 | 79.4 | 20.42 |
Fig. 6 SCLC curve of PSCs (a) undoped and (b) doped with L-arginine, (c) EIS impedance spectra and (d) dark J-V curves of PSCs with and without L-arginine doping PC61 BM: [6,6]-phenyl-C61-butyric acid methyl ester
[1] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050-6051.
DOI URL |
[2] |
JAEKI J, MINJIN K, JONGDEUK S, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592(7854): 381-385.
DOI URL |
[3] |
LI Y, JI L, LIU R G, et al. A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J. Mater. Chem. A, 2018, 6: 12842-12875.
DOI URL |
[4] |
LONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347: 967-970
DOI URL |
[5] |
UNGER E L, KEGELMANN L, SUCHAN K, et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A, 2017, 5: 11401-11409.
DOI URL |
[6] |
SANG I S, PARK B W, DONG U L, et al. long-term chemical aging of hybrid halide perovskites. Nano letters, 2019, 19(8): 5604-5611.
DOI URL |
[7] |
HODES G, CAHEN D. Photovoltaics: perovskite cells roll forward. Nat. Photonics, 2014, 8(2): 87-88.
DOI URL |
[8] |
GUO Z, ZHAO S, LIU A, et al. Niobium incorporation into CsPbI2Br for stable and efficient all inorganic perovskite solar cells. ACS Appl. Mater. Interfaces, 2019, 11(22): 19994-20003.
DOI URL |
[9] |
AKA B, AR C, NVA B, et al. Defect states influencing hysteresis and performance of perovskite solar cells. Solar Energy, 2020, 211: 345-353.
DOI URL |
[10] |
GUO Y, XUE Y, XU L. Interfacial interactions and enhanced optoelectronic properties of GaN/perovskite heterostructures: insight from first-principles calculations. J. Mater. Sci., 2021, 56(19): 11352-11363.
DOI URL |
[11] |
YU J C, KIM D B, JUNG E D, et al. High-performance perovskite light-emitting diodes via morphological control of perovskite films. Nanoscale, 2016, 8(13): 7036-7042.
DOI URL |
[12] |
LI N, TAO S, CHEN Y, et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy, 2019, 4(5): 408-415.
DOI URL |
[13] |
DOHERTY T, WINCHESTER A J, MACPHERSON S, et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature, 2020, 580(7803): 360-366.
DOI URL |
[14] |
DU J, FENG L, GUO X, et al. Enhanced efficiency and stability of planar perovskite solar cells by introducing amino acid to SnO2/ perovskite interface. J. Power Sources, 2020, 455: 227974.
DOI URL |
[15] |
CAO Y, WANG N N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249-253.
DOI URL |
[16] |
LIU W, HU Z L, WANG L, et al. Passiviation of l-3-(4- pyridyl)-alanineon interfacial defects of perovskite solar cell. J. Inorg. Mater., 2021, 36(6): 629-637.
DOI URL |
[17] |
WANG R, XUE J, WANG K L, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 2019, 366(6472): 1509-1513.
DOI URL |
[18] |
YANG S, DAI J, YU Z H, et al. Tailoring passivation molecular structures for extremely small open circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc., 2020, 142(27): 11937-11938.
DOI URL |
[19] |
LEE J W, BAE S H, HSIEH Y T, et al. A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem, 2017, 3(2): 290-302.
DOI URL |
[20] |
NIU T, LU J, MUNIR R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater., 2018, 30(16): 1706576.
DOI URL |
[21] |
FEI C lI B, ZHANG R, et al. Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 Film. Adv. Energy Mater., 2017, 7(9): 1602017.
DOI URL |
[22] |
GAO Y M, JIANG W L, YANG T Y, et al. Fabrication and characterization of high stability (EDA)(FA)2[Pb3I10] layered perovskite film. J. Inorg. Mater., 2016, 31(10): 1129-1134.
DOI URL |
[23] | SI H, ZHANG Z, LIAO Q, et al. A-site management for highly crystalline perovskites. Adv. Mater., 2020, 32(4): 201904702. |
[24] |
HU J, XU X, CHEN Y, et al. Overcoming photovoltage deficit via natural amino acid passivation for efficient perovskite solar cells and modules. J. Mater. Chem. A, 2021, 9(9): 5857-5865.
DOI URL |
[25] |
BRENES R, GUO D Y, OSHEROV A, et al. Metal halide perovskite polycrystalline films exhibiting properties of single crystals. Joule, 2017, 1(1): 155-167.
DOI URL |
[26] |
NI Z Y, BAO C X, LIU Y, et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science, 2020, 367(6484): 1352-1358.
DOI URL |
[27] |
GUO X B, WEI Y U, LI J, et al. Improving microstructure and photoelectric performance of the perovskite material via mixed solvents. J. Inorg. Mater., 2017, 32(8): 870-876.
DOI URL |
[28] |
JIN W Y, JIHUN J, UNSOO K, et al. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethano l-based formamidinium lead tri-iodide precursor solution. Joule, 2021, 5(9): 2420-2436.
DOI URL |
[29] |
RONG Y, YUE H, RAVISHANKAR S, et al. Tunable hysteresis effect for perovskite solar cells. Energy Environ. Sci., 2017, 10(1): 2383-2391.
DOI URL |
[30] | LIU W, LIU N, JI S, et al. Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nanomicro lett., 2020, 12(9): 207-217. |
YI H, XIAO Y D, SIMON SCHEINER, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017, 358(6367): 1192-1197.
DOI URL |
|
[31] |
YI H, XIAO Y D, SIMON SCHEINER, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017, 358(6367): 1192-1197.
DOI URL |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[6] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[7] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[8] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[9] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[10] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[11] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[12] | MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395. |
[13] | WANG Ye, JIAO Yinan, GUO Junxia, LIU Huan, LI Rui, SHANG Zixuan, ZHANG Shidong, WANG Yonghao, GENG Haichuan, HOU Denglu, ZHAO Jinjin. Optimization of Interfacial Engineering of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(11): 1323-1330. |
[14] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[15] | LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2021, 36(6): 629-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||