Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (1): 72-78.DOI: 10.15541/jim20210199
Special Issue: 【信息功能】MAX层状材料、MXene及其他二维材料(202409); 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
YANG Xinyue(), DONG Qingshun, ZHAO Weidong, SHI Yantao()
Received:
2021-03-25
Revised:
2021-05-27
Published:
2022-01-20
Online:
2021-06-10
Contact:
SHI Yantao, professor. E-mail: shiyantao@dlut.edu.cn
About author:
YANG Xinyue(1996-), female, Master candidate. E-mail: yangxinyue@mail.dlut.edu.cn
Supported by:
CLC Number:
YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2022, 37(1): 72-78.
Sample | τ1/ns | A1 | τ2/ns | A2 | τave/ns |
---|---|---|---|---|---|
3D | 2.55 | 0.71 | 17.26 | 0.30 | 13.49 |
2D/3D | 4.75 | 0.53 | 24.86 | 0.43 | 21.02 |
Table 1 TRPL fitting results of 3D and 2D/3D perovskite films
Sample | τ1/ns | A1 | τ2/ns | A2 | τave/ns |
---|---|---|---|---|---|
3D | 2.55 | 0.71 | 17.26 | 0.30 | 13.49 |
2D/3D | 4.75 | 0.53 | 24.86 | 0.43 | 21.02 |
Fig. 5 (a) Schematic diagram of 2D/3D-PSCs structure, (b) J-V curves (reverse and forward scans), (c) EQE spectra with the corresponding integrated current densities, and (d) stabilized PCE curves at the maximum power point for 3D-PSCs and 2D/3D-PSCs
Sample | Scan method | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|---|
3D | Reverse | 1.11 | 23.17 | 72.74 | 18.70 |
Forward | 1.08 | 23.18 | 71.85 | 18.06 | |
2D/3D | Reverse | 1.17 | 23.45 | 76.39 | 20.88 |
Forward | 1.16 | 23.44 | 75.07 | 20.41 |
Table 2 Detailed photovoltaic parameters of 3D-PSCs and 2D/3D-PSCs
Sample | Scan method | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|---|
3D | Reverse | 1.11 | 23.17 | 72.74 | 18.70 |
Forward | 1.08 | 23.18 | 71.85 | 18.06 | |
2D/3D | Reverse | 1.17 | 23.45 | 76.39 | 20.88 |
Forward | 1.16 | 23.44 | 75.07 | 20.41 |
Fig. 6 (a) Thermal stability of 3D-PSCs and 2D/3D-PSCs under 85 ℃ in air (relative humidity: 40%-70%), and (b) light stability of 3D-PSCs and 2D/3D-PSCs under continuous 1 sun illumination in N2 All devices are unencapsulated
[1] | WANG Z, LIN Q, CHMIEL F P, et al. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium- formamidinium lead halide perovskites. Nature Energy, 2017, 2(9):1-10. |
[2] |
YIN W J, SHI T, YAN Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Advanced Materials, 2014, 26(27):4653-4658.
DOI URL |
[3] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic Cells. Journal of the American Chemical Society, 2009, 131(17):6050-6051.
DOI URL |
[4] | KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2(1):1-7. |
[5] | Best research-cell efficiencies (EB/OL)(2021-11-10). https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.rev211011.pdf |
[6] | LIU Z, CAO F, WANG M, et al. Observing defect passivation of the grain boundary with 2-aminoterephthalic acid for efficient and stable perovskite solar cells. Angewandte Chemie International Edition, 2020, 132(10):4190-4196. |
[7] | LÜ Y SONG X YIN Y, et al. Hexylammonium iodide derived two-dimensional perovskite as interfacial passivation layer in efficient two-dimensional/three-dimensional perovskite solar cells. ACS Applied Materials & Interfaces, 2019, 12(1):698-705. |
[8] | WANG Q, CHEN B, LIU Y, et al. Scaling behavior of moisture- induced grain degradation in polycrystalline hybrid perovskite thin films. Energy & Environmental Science, 2017, 10(2):516-522. |
[9] |
LEE J W, PARK N G. Chemical approaches for stabilizing perovskite solar cells. Advanced Energy Materials, 2020, 10(1):1903249.
DOI URL |
[10] |
BOYD C C, CHEACHAROEN R, LEIJTENS T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chemical Reviews, 2019, 119(5):3418-3451.
DOI URL |
[11] |
HU Y, SCHLIPF J, WUSSLER M, et al. Hybrid perovskite/perovskite heterojunction solar cells. ACS Nano, 2016, 10(6):5999-6007.
DOI URL |
[12] |
CHEN P, BAI Y, WANG S, et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Advanced Functional Materials, 2018, 28(17):1706923.
DOI URL |
[13] |
ZOU Y, CUI Y, WANG H Y, et al. Highly efficient and stable 2D-3D perovskite solar cells fabricated by interfacial modification. Nanotechnology, 2019, 30(27):275202.
DOI URL |
[14] |
HE M, LIANG J, ZHANG Z, et al. Compositional optimization of a 2D-3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8(48):25831-25841.
DOI URL |
[15] | JIANG Q, ZHANG L, WANG H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2 PbI3- based perovskite solar cells. Nature Energy, 2016, 2(1):1-7. |
[16] |
CHEN Q, ZHOU H, SONG T B, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Letters, 2014, 14(7):4158-4163
DOI URL |
[17] |
TUMEN-ULZII G, QIN C, KLOTZ D, et al. Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells. Advanced Materials, 2020, 32(16):1905035.
DOI URL |
[18] |
NIU T, LU J, MUNIR R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Advanced Materials, 2018, 30(16):1706576.
DOI URL |
[19] |
SHERKAR T S, MOMBLONA C, GIL-ESCRIG L, et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Letters, 2017, 2(5):1214-1222.
DOI URL |
[20] |
CHEN B, RUDD P N, YANG S, et al. Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 2019, 48(14):3842-3867.
DOI URL |
[21] |
KOH T M, SHANMUGAM V, GUO X, et al. Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics. Journal of Materials Chemistry A, 2018, 6(5):2122-2128.
DOI URL |
[22] |
ZHANG M, LYU M, YU H, et al. Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly (3-hexylthiophene) layer as a hole transporter. Chemistry-A European Journal, 2015, 21(1):434-439.
DOI URL |
[23] |
SI H, LIAO Q, KANG Z, et al. Deciphering the NH4PbI3 intermediate phase for simultaneous improvement on nucleation and crystal growth of perovskite. Advanced Functional Materials, 2017, 27(30):1701804.
DOI URL |
[24] |
ZHANG M, YU H, LYU M, et al. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3-xClx films. Chemical Communications, 2014, 50(79):11727-11730.
DOI URL |
[25] |
SALIBA M, ETGAR L. Current density mismatch in perovskite Solar Cells. ACS Energy Letters, 2020, 5(9):2886-2888.
DOI URL |
[26] |
AKIN S, ARORA N, ZAKEERUDDIN S M, et al. New strategies for defect passivation in high-efficiency perovskite solar cells. Advanced Energy Materials, 2020, 10(13):1903090.
DOI URL |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YANG Bo, LÜ Gongxuan, MA Jiantai. Electrocatalytic Water Splitting over Nickel Iron Hydroxide-cobalt Phosphide Composite Electrode [J]. Journal of Inorganic Materials, 2024, 39(4): 374-382. |
[5] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[6] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[7] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[8] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[9] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[10] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[11] | HU Zhongliang, FU Yuntian, JIANG Meng, WANG Lianjun, JIANG Wan. Thermal Stability of Nb/Mg3SbBi Interface [J]. Journal of Inorganic Materials, 2023, 38(8): 931-937. |
[12] | LIU Jian, WANG Lingkun, XU Baoliang, ZHAO Qian, WANG Yaoxuan, DING Yi, ZHANG Shengtai, DUAN Tao. Nd-doped ZrSiO4 Ceramics: Synthesis in Molten Salt at Low Temperature, Phase Evolution and Chemical Stability [J]. Journal of Inorganic Materials, 2023, 38(8): 910-916. |
[13] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[14] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. |
[15] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||