Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (2): 152-162.DOI: 10.15541/jim20210183
Special Issue: 【能源环境】超级电容器,锂金属电池,钠离子电池和水系电池(202409)
• REVIEW • Previous Articles Next Articles
LI Gaoran, LI Hongyang, ZENG Haibo
Received:
2021-03-23
Revised:
2021-05-07
Published:
2022-02-20
Online:
2021-05-25
About author:
LI Gaoran (1989-), male, professor. E-mail: gaoranli@njust.edu.cn
Supported by:
CLC Number:
LI Gaoran, LI Hongyang, ZENG Haibo. Recent Progress of Boron-based Materials in Lithium-sulfur Battery[J]. Journal of Inorganic Materials, 2022, 37(2): 152-162.
[1] DUNN B, KAMATH H, TARASCON J M.Electrical energy storage for the grid: a battery of choices.Science, 2011, 334(6058): 928-935. [2] ARICO A S, BRUCE P, SCROSATI B, [3] LIANG Y R, ZHAO C Z, YUAN H, [4] GOODENOUGH J B, PARK K S.The Li-ion rechargeable battery: a perspective.Journal of the American Chemical Society, 2013, 135(4): 1167-1176. [5] TARASCON J M, ARMAND M.Issues and challenges facing rechargeable lithium batteries.Nature, 2011, 414: 171-179. [6] JIN G Y, HE H C, WU J, [7] FANG R, ZHAO S Y, SUN Z H, [8] HU J J, LI G R, GAO X P.Current status, problems and challenges in lithium-sulfur batteries.Journal of Inorganic Materials, 2013, 28(11): 1181-1186. [9] LI G R, WANG S, ZHANG Y N, [10] PENG H J, HUANG J Q, ZHANG Q.A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.Chemical Society Reviews, 2017, 46(17): 5237-5288. [11] JANA M, XU R, CHENG X B, [12] HE J R, MANTHIRAM A.A review on the status and challenges of electrocatalysts in lithium-sulfur batteries.Energy Storage Materials, 2019, 20: 55-70. [13] SEH Z W, SUN Y M, ZHANG Q F, [14] JI X L, EVERS S, BLACK R, [15] ZHANG Z, KONG L L, LIU S, [16] XU W C, PAN X X, MENG X, [17] LIU Y T, LIU S, LI G R, [18] CHEN H H, XIAO Y W, CHEN C, [19] YOO J, CHO S J, JUNG G Y, [20] HU Y, LIU C.Introduction of 1,2-migration for organoboron compounds.University Chemistry, 2019, 34(12): 39-44. [21] SOREN K M, SUNING W.Boron-based stimuli responsive materials.Chemical Society Reviews, 2019, 48(13): 3537-3549. [22] HUANG Z G, WANG S N, DEWHURST R D, [23] ZHU Y H, GAO S M, HOSMANE N S.Boron-enriched advanced energy materials.Inorganica Chimica Acta, 2017, 471: 577-586. [24] KHAN K, TAREEN A K, ASLAM M, [25] RAO D W, LIU X J, YANG H, [26] JIANG H R, SHYY W, LIU M, [27] ZHANG C Y, HE Q, CHU W, [28] ZHANG L, LIANG P, SHU H B, [29] GRIXTI S, MUKHERJEE S, SINGH C V.Two-dimensional boron as an impressive lithium-sulphur battery cathode material.Energy Storage Materials, 2018, 13: 80-87. [30] MANNIX A J, ZHOU X F, KIRALY B, [31] FENG B J, ZHANG J, ZHONG Q, [32] PARAKNOWITSCH J P, THOMAS A.Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications.Energy & Environmental Science, 2013, 6(10): 2839-2855. [33] WANG H B, MAIYALAGAN T, WANG X.Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications.ACS Catalysis, 2012, 2(5): 781-794. [34] XIE Y, MENG Z, CAI T W, [35] SHI P C, WANG Y, LIANG X, [36] YANG L J, JIANG S J, ZHAO Y, [37] AI W, LI J W, DU Z Z, [38] YANG C P, YIN Y X, YE H, [39] XU C X, ZHOU H H, FU C P, [40] HAN P, MANTHIRAM A.Boron- and nitrogen-doped reduced graphene oxide coated separators for high-performance Li-S batteries.Journal of Power Sources, 2017, 369: 87-94. [41] HOU T Z, CHEN X, PENG H J, [42] XIONG D G, ZHANG Z, HUANG X Y, [43] YUAN S Y, BAO J L, WANG L N, [44] CHEN L, FENG J R, ZHOU H H, [45] JIN C B, ZHANG W K, ZHUANG Z Z, [46] ULLAH S, DENIS P A, SATO F.Unusual enhancement of the adsorption energies of sodium and potassium in sulfur-nitrogen and silicon-boron codoped graphene.ACS Omega, 2018, 3(11): 15821-15828. [47] ZHANG Z, XIONG D G, SHAO A H, [48] WANG P, KUMAR R, SANKARAN E M, [49] HE G J, LING M, HAN X Y, [50] WANG C C, AKBAR S A, CHEN W, [51] XIAO Z B, YANG Z, ZHANG L J, [52] WANG L J, LIU F H, ZHAO B Y, [53] BALACH J, LINNEMANN J, JAUMANN T, [54] BEN-DOR L, SHIMONY Y.Crystal structure, magnetic susceptibility and electrical conductivity of pure and NiO-doped MoO2 and WO2.Materials Research Bulletin, 1974, 9(6): 837-44. [55] SAMSONOV G.难熔化合物手册. 北京: 中国工业出版社, 1965: 1-147. [56] FENG L S, QUN C X, LIN M Y, [57] TAO Q, MA S L, CUI T, [58] SHEN Y F, XU C, HUANG M, [59] GUPTA S, PATEL M K, MIOTELLO A, [60] WU F, WU C.New secondary batteries and their key materials based on the concept of multi-electron reaction.Chinese Science Bulletin, 2014, 59(27): 3369-3376. [61] GUAN B, FAN L S, WU X, [62] GUAN B, ZHANG Y, FAN L S, [63] GUAN B, SUN X, ZHANG Y, [64] BASU B, RAJU GSURI A.Processing and properties of monolithic TiB2 based materials.International Materials Reviews, 2006, 51(6): 352-374. [65] LI C C, LIU X B, ZHU L, [66] LI Z J, JIANG H R, LAI N C, [67] JIN L M, NI J, SHEN C, [68] WU R, XU H K, ZHAO Y W, [69] HE J R, BHARGAV A, MANTHIRAM A.Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy- density lithium-sulfur batteries.Advanced Materials, 2020, 32(40): 2004741. [70] PANG Q, KWOK C Y, KUNDU D, [71] YU T T, GAO P F, ZHANG Y, [72] JANA S, THOMAS S, LEE C H, [73] SUN C, HAI C X, ZHOU Y, [74] ARENAL R, LOPEZ BEZANILLA A.Boron nitride materials: an overview from 0D to 3D (nano)structures.Wiley Interdisciplinary Reviews-Computational Molecular Science, 2015, 5(4): 299-309. [75] JIANG X F, WENG Q H, WANG X B, [76] PRAKASH A, NEHATE S D, SUNDARAM K B.Boron carbon nitride based metal-insulator-metal UV detectors for harsh environment applications.Optics Letters, 2016, 41(18): 4249-4252. [77] ZHAO Y M, YANG L, ZHAO J X, [78] YI Y K, LI H P, CHANG H H, [79] HE B, LI W C, ZHANG Y, [80] DENG D R, BAI C D, XUE F, [81] SUN K, GUO P Q, SHANG X N, [82] FAN Y, YANG Z, HUA W X, [83] KIM P J H, SEO J, FU K, [84] PRAMANICK A, DEY P P, DAS P K.Microstructure, phase and electrical conductivity analyses of spark plasma sintered boron carbide machined with WEDM.Ceramics International, 2020, 46(3): 2887-2894. [85] YEGANEH M, SARAF H H, KAFI F, [86] CHANG Y K, SUN X H, MA M D, [87] LUO L, CHUNG S H, ASL H Y, [88] SONG N N, GAO Z, ZHANG Y Y, [89] ZHANG R H, CHI C, WU M C, |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[9] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[10] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[11] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[12] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[13] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[14] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[15] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||