Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (10): 1103-1110.DOI: 10.15541/jim20210091
• RESEARCH LETTER • Previous Articles Next Articles
ZHANG Junmin1,2,3(), CHEN Xiaowu1,2(), LIAO Chunjin1,2, GUO Feiyu1,2,3, YANG Jinshan1,2, ZHANG Xiangyu1,2, DONG Shaoming1,2()
Received:
2021-02-09
Revised:
2021-03-24
Published:
2021-10-20
Online:
2021-04-05
Contact:
CHEN Xiaowu, lecturer. E-mail: xwchen@mail.sic.ac.cn; DONG Shaoming, professor. E-mail: smdong@mail.sic.ac.cn
About author:
ZHANG Junmin(1996–), male, PhD candidate. E-mail: zhangjm2@shanghaitech.edu.cn
Supported by:
CLC Number:
ZHANG Junmin, CHEN Xiaowu, LIAO Chunjin, GUO Feiyu, YANG Jinshan, ZHANG Xiangyu, DONG Shaoming. Optimizing Microstructure and Properties of SiCf/SiC Composites Prepared by Reactive Melt Infiltration[J]. Journal of Inorganic Materials, 2021, 36(10): 1103-1110.
Preform | Preparing process | Further impregnation | Composites |
---|---|---|---|
Pre-1 | Slurry impregnation | None | Com-1 |
Pre-2 | Slurry impregnation | Pure PF | Com-2 |
Pre-3 | Slurry impregnation | Polymer blend | Com-3 |
Preform | Preparing process | Further impregnation | Composites |
---|---|---|---|
Pre-1 | Slurry impregnation | None | Com-1 |
Pre-2 | Slurry impregnation | Pure PF | Com-2 |
Pre-3 | Slurry impregnation | Polymer blend | Com-3 |
Fig. 2 SEM images of pyrolytic carbon prepared with different organic pore former contents ((a) Pure PF; (b) Organic pore former: PF=0.1; (c) Organic pore former: PF=0.2, (d) Organic pore former: PF=0.3); (e) Pore size distribution of pyrolytic carbon
Composites | Density/(g·cm-3) | Open porosity/% | Flexural strength/MPa | Elastic modulus/GPa |
---|---|---|---|---|
Com-1 | (2.41±0.08) | (10.08±0.50) | (96.04±9.50) | (42.53±0.73) |
Com-2 | (2.57±0.08) | (8.39±0.58) | (176.76±3.78) | (67.55±0.46) |
Com-3 | (2.61±0.05) | (7.92±0.61) | (200.50±7.33) | (79.19±0.65) |
Composites | Density/(g·cm-3) | Open porosity/% | Flexural strength/MPa | Elastic modulus/GPa |
---|---|---|---|---|
Com-1 | (2.41±0.08) | (10.08±0.50) | (96.04±9.50) | (42.53±0.73) |
Com-2 | (2.57±0.08) | (8.39±0.58) | (176.76±3.78) | (67.55±0.46) |
Com-3 | (2.61±0.05) | (7.92±0.61) | (200.50±7.33) | (79.19±0.65) |
Fig. 8 (a) Schematic of reaction layer generated during the RMI, (b) curves of cumulative volume percentage vs pore diameter of preforms, and (c) variation of pore radius with infiltration time for preforms
[1] |
ZHU Y, WANG S, LI W, et al. Preparation of carbon fiber-reinforced zirconium carbide matrix composites by reactive melt infiltration at relative low temperature. Scripta Materialia, 2012, 67(10):822-825.
DOI URL |
[2] |
WANG J, LIN M, XU Z, et al. Microstructure and mechanical properties of C/C-SiC composites fabricated by a rapid processing method. J. Eur. Ceram. Soc., 2009, 29(14):3091-3097.
DOI URL |
[3] |
TIAN J T, SHOBU K. Fabrication of silicon carbide-mullite composite by melt infiltration. J. Am. Ceram. Soc., 2003, 86(1):39-42.
DOI URL |
[4] | SINGH M, ALMAN D E, HAWK J A. Microstructure and Wear Behavior of SiC-based Composites Fabricated by Melt Infiltration, in: Alman D E, HAWK J A., SIMMONS J W (Eds.). Roll of Characterization in Understanding Environmental Degradation of Materials, ASM International, 1998: 169-175. |
[5] |
WANG Y X, TAN S H, JIANG D L. The effect of porous carbon preform and the infiltration process on the properties of reaction- formed SiC. Carbon, 2004, 42(8/9):1833-1839.
DOI URL |
[6] |
JIANG S Z, XIONG X, CHEN Z K, et al. Influence factors of C/C-SiC dual matrix composites prepared by reactive melt infiltration. Materials & Design, 2009, 30(9):3738-3742.
DOI URL |
[7] |
WANG D, DONG S M, ZHOU H J, et al. Fabrication and microstructure of 3D Cf/ZrC-SiC composites: through RMI method with ZrO2 powders as pore-making agent. Ceram. Int., 2016, 42(6):6720-6727.
DOI URL |
[8] |
ROGER J, CHOLLON G. Mechanisms and kinetics during reactive infiltration of molten silicon in porous graphite. Ceram. Int., 2019, 45(7):8690-8699.
DOI URL |
[9] |
PILLLEE S, KIYOON H, SOOPARK J, et al. Processing and properties of SiC and SiC/SiC composite materials by melt infiltration process. International Journal of Modern Physics B, 2003, 17(8):1833-1838.
DOI URL |
[10] |
WASHBURN E W. The dynamics of capillary flow. Physical Review, 1921, 17(3):273-283.
DOI URL |
[11] |
BOUGIOURI V, VOYTOVYCH R, ROJO-CALDERON N, et al. The role of the chemical reaction in the infiltration of porous carbon by NiSi alloys. Scripta Materialia, 2006, 54(11):1875-1878.
DOI URL |
[12] |
KUMAR S, KUMAR A, SHUKLA A, et al. Capillary infiltration studies of liquids into 3D-stitched C-C preforms Part A: Internal pore characterization by solvent infiltration, mercury porosimetry, and permeability studies. J. Eur. Ceram. Soc., 2009, 29(12):2643-2650.
DOI URL |
[13] |
KUMAR S, KUMAR A, DEVI R, et al. Capillary infiltration studies of liquids into 3D-stitched C-C preforms Part B: Kinetics of silicon infiltration. J. Eur. Ceram. Soc., 2009, 29(12):2651-2657.
DOI URL |
[14] |
WANG Y, ZHU X, ZHANG L, et al. C/C-SiC-ZrC composites fabricated by reactive melt infiltration with Si0.87Zr0.13 alloy. Ceram. Int., 2012, 38(5):4337-4343.
DOI URL |
[15] |
CHEN X W, NI D W, KAN Y M, et al. Reaction mechanism and microstructure development of ZrSi2 melt-infiltrated Cf/SiC-ZrC- ZrB2 composites: the influence of preform pore structures. Journal of Materiomics, 2018, 4(3):266-275.
DOI URL |
[16] |
CHEN X W, FENG Q, KAN Y M, et al. Effects of preform pore structure on infiltration kinetics and microstructure evolution of RMI-derived Cf/SiC-ZrC-ZrB2 composite. J. Eur. Ceram. Soc., 2020, 40(7):2683-2690.
DOI URL |
[17] |
ZHONG Q, ZHANG X Y, DONG S M, et al. Reactive melt infiltrated Cf/SiC composites with robust matrix derived from novel engineered pyrolytic carbon structure. Ceram. Int., 2017, 43(7):5832-5836.
DOI URL |
[18] | LEE S P, PARK J S, KATOH Y, et al. Process, microstructure and flexural properties of reaction sintered Tyranno SA/SiC composites. Journal of Nuclear Materials, 2002, 307:1191-1195. |
[19] |
ZHAO Y Y, XIA H Y, TANG R, et al. A low cost preparation of C/SiC composites by infiltrating molten Si into gelcasted pure porous carbon preform. Ceram. Int., 2015, 41(5):6478-6487.
DOI URL |
[20] |
SINGH M, FARMER S C. Morphological characterization of microporous carbon materials. Journal of Materials Science Letters, 1997, 16(11):946-949.
DOI URL |
[21] | LEVENSPIEL O. Ingenieria de las Reacciones. 2nd ed. Wiley (ed.). Barcelona: Revertre, 1978. |
[22] |
HON M H, DAVIS R F. Self-diffusion of C-14 in polycrystalline beta-sic. J. Mater. Sci., 1979, 14(10):2411-2421.
DOI URL |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[3] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[4] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[5] | XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth [J]. Journal of Inorganic Materials, 2024, 39(4): 399-408. |
[6] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[7] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[8] | SHI Weigang, ZHANG Chao, LI Mei, WANG Jing, ZHANG Chengyu. 2D-SiCf/SiC Interlaminar Mode I Fracture Testing and Characterization [J]. Journal of Inorganic Materials, 2024, 39(1): 45-50. |
[9] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[10] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[11] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[12] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[13] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[14] | WU Dongjiang, ZHAO Ziyuan, YU Xuexin, MA Guangyi, YOU Zhulin, REN Guanhui, NIU Fangyong. Direct Additive Manufacturing of Al2O3-TiCp Composite Ceramics by Laser Directed Energy Deposition [J]. Journal of Inorganic Materials, 2023, 38(10): 1183-1192. |
[15] | SUN Xiaofan, CHEN Xiaowu, JIN Xihai, KAN Yanmei, HU Jianbao, DONG Shaoming. Fabrication and Properties of AlN-SiC Multiphase Ceramics via Low Temperature Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2023, 38(10): 1223-1229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||