Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (4): 379-385.DOI: 10.15541/jim20200500
• RESEARCH PAPER • Previous Articles Next Articles
ZHANG Xiaoyan1,2,3(), LIU Xinyue1,2, YAN Jinhua1,2, GU Yaohang1,2, QI Xiwei3,4(
)
Received:
2020-08-28
Revised:
2020-09-29
Published:
2021-04-20
Online:
2020-10-30
Contact:
QI Xiwei, professor. E-mail: qixiwei@mail.neu.edu.cn
About author:
ZHANG Xiaoyan(1982-), female, associate professor. E-mail: xyaaa2005@163.com
Supported by:
CLC Number:
ZHANG Xiaoyan, LIU Xinyue, YAN Jinhua, GU Yaohang, QI Xiwei. Preparation and Property of High Entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 Perovskite Ceramics[J]. Journal of Inorganic Materials, 2021, 36(4): 379-385.
Fig. 3 SEM images of high entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic sintered at different temperatures (a) 1250 ℃; (b) 1300 ℃; (c) 1350 ℃; (d)1400 ℃; (e) 1450 ℃; (f) 1500 ℃
[1] | YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004,6(5):299-303. |
[2] | CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science Engineering A, 2004, 375-377(1):213-218. |
[3] | RANGANATHAN. Alloyed pleasures: multimetallic cocktails. Current Science, 2003,85(5):1404-1406. |
[4] | 王晓鹏, 孔凡涛. 高熵合金及其他高熵材料研究新进展. 航空材料学报, 2019,39(6):1-19. |
[5] |
ZHOU Y J, ZHANG Y, WANG Y L, et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied Physics Letters, 2007,90(18):181904-1-3.
DOI URL |
[6] | ZHOU W, FU L M, LIU P, et al. Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy. Intermetallics, 2017,85:90-97. |
[7] | SZKLARZ Z, LEKKI J, BOBROWSKI P, et al. The effect of SiC nanoparticles addition on the electrochemical response of mechanically alloyed CoCrFeMnNi high entropy alloy. Materials Chemistry and Physics, 2018,215:385-392. |
[8] | 王睿鑫, 唐宇, 李永彦, 等. NbZrTiTa高熵合金的高温氧化行为. 稀有金属材料与工程, 2020,49(7):2417-2424. |
[9] | MISHRA K, SAHAY RAJESH P P, ROHIT R S. Alloying, magnetic and corrosion behavior of AlCrFeMnNiTi high entropy alloy. Journal of Materials Science, 2019,54(5):4433-4443. |
[10] | 陈克丕, 李泽民, 马金旭, 等. 高熵陶瓷材料研究进展与展望. 陶瓷学报, 2020,41(2):157-163. |
[11] | 顾俊峰, 邹冀, 张帆, 等. 高熵陶瓷材料研究进展. 中国材料进展, 2019,38(9):855-865. |
[12] | CHEN H, XIANG H M, DAI F Z, et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. Journal of Materials Science & Technology, 2019,35(8):1700-1705. |
[13] | GILD J, BRAUN J, KAUFMANN K, et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. Journal of Materiomics, 2019,5(3):337-343. |
[14] | QIN Y, LIU J X, LI F, et al. A high entropy silicide by reactive spark plasma sintering. Journal of Advanced Ceramics, 2019,8(1):148-152. |
[15] | LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics. Journal of Advanced Ceramics, 2020,9(4):503-510. |
[16] |
ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015,6:8485.
URL PMID |
[17] | SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 2018,38(5):2318-2327. |
[18] | CHEN K P, PEI X T, TANG L, et al. A five-component entropy-stabilized fluorite oxide. Journal of the European Ceramic Society, 2018,38(11):4161-4164. |
[19] | DABROWA J, STYGAR M, MIKUŁA A, et al. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Materials Letters, 2018,216:32-36. |
[20] | JIANG S C, HU T, GILD J, et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 2018,142:116-120. |
[21] | DONG Y, REN K, LU Y H, et al. High-entropy environmental barrier coating for the ceramic matrix composites. Journal of the European Ceramic Society, 2019,39(7):2574-2579. |
[22] | LI F, ZHOU L, LIU J X, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 2019,8(4):576-582. |
[23] | ZHANG M, ZHANG X, DAS S, et al. High remanent polarization and temperature-insensitive ferroelectric remanent polarization in BiFeO3-based lead-free perovskite. Journal of Materials Chemistry C, 2019,7(34):10551-10560. |
[24] | ZHANG M, ZHANG X Y, QI X W, et al. Enhanced ferroelectric, magnetic and magnetoelectric properties of multiferroic BiFeO3-BaTiO3-LaFeO3 ceramics. Ceramics International, 2018,44(17):21269-21276. |
[25] | DONG G X, MA S W, DU J, et al. Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics. Ceramics International, 2009,35(5):2069-2075. |
[26] | KREUER K D. Proton-conducting oxides. Annual Review of Materials Research, 2003,33(1):333-359. |
[27] | WRIGHTON M S, MORSE D L, ELLIS A B, et al. Photoassisted electrolysis of water by ultraviolet irradiation of an antimony doped stannic oxide electrode. ChemInform, 1976,7(13):44-48. |
[28] | JI L, MCDANIEL M D, WANG S J, et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nature Nanotechnology, 2015,10(1):84-90. |
[29] | BIESUZ M, FU S, DONG J, et al. High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3-x perovskite synthesis by reactive spark plasma sintering. Journal of Asian Ceramic Societies, 2019,7(2):127-132. |
[30] | ZHOU S Y, PU Y P, ZHANG Q W, et al. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceramics International, 2020,46(6):7430-7437. |
[31] | BÉRARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016,4(24):9536-9541. |
[32] | ZHANG Y, YANG X, LIAW P K. Alloy design and properties optimization of high-entropy alloys. JOM, 2012,64(7):830-838. |
[33] | SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides . Acta Crystallographica Section A, Foundations of Crystallography, 1976,A32(5):751-767. |
[34] | PAN W G, CAO M H, HAO H, et al. Defect engineering toward the structures and dielectric behaviors of (Nb, Zn) co-doped SrTiO3 ceramics. Journal of the European Ceramic Society, 2020,40(1):49-55. |
[35] | MERINO N A, BARBERO B P, ELOY P, et al. La1-xCaxCoO3 perovskite-type oxides: identification of the surface oxygen species by XPS. Applied Surface Science, 2006,253(3):1489-1493. |
[36] | OSENCIAT N, BÉRARDAN D, DRAGOE D, et al. Charge compensation mechanisms in Li-substituted high-entropy oxides and influence on Li superionic conductivity. Journal of the American Ceramic Society, 2019,102(10):6156-6162. |
[37] | WU J G, WANG J. Ferroelectric and impedance behavior of La- and Ti-codoped BiFeO3 thin films. Journal of the American Ceramic Society, 2010,93(9):2795-2803. |
[38] | BAI Y L, ZHAO H, CHEN J, et al. Strong magnetoelectric coupling effect of BiFeO3/Bi5Ti3FeO15 bilayer composite films. Ceramics International, 2016,42(8):10304-10309. |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[3] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[4] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[5] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[6] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[7] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[8] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[9] | DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen. Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering [J]. Journal of Inorganic Materials, 2023, 38(9): 1089-1096. |
[10] | DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia. Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors [J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030. |
[11] | WANG Run, XIANG Hengyang, ZENG Haibo. Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs [J]. Journal of Inorganic Materials, 2023, 38(9): 1062-1068. |
[12] | WANG Machao, TANG Yangmin, DENG Mingxue, ZHOU Zhenzhen, LIU Xiaofeng, WANG Jiacheng, LIU Qian. Cs2Ag0.1Na0.9BiCl6:Tm3+ Double Perovskite: Coprecipitation Preparation and Near-infrared Emission [J]. Journal of Inorganic Materials, 2023, 38(9): 1083-1088. |
[13] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[14] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[15] | CAI Kai, JIN Zhiwen. Photodetector Based on Two-dimensional Perovskite (PEA)2PbI4 [J]. Journal of Inorganic Materials, 2023, 38(9): 1069-1075. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||