Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (6): 629-636.DOI: 10.15541/jim20200495
Special Issue: 能源材料论文精选(2021); 【虚拟专辑】钙钛矿材料(2020~2021); 【虚拟专辑】太阳能电池(2020~2021)
• RESEARCH ARTICLE • Previous Articles Next Articles
LIU Wenwen1(), HU Zhilei1, WANG Li1, CAO Mengsha1, ZHANG Jing1, ZHANG Jing1, ZHANG Shuai1(), YUAN Ningyi1, DING Jianning2()
Received:
2020-08-27
Revised:
2020-10-22
Published:
2021-06-20
Online:
2020-11-05
Contact:
ZHANG Shuai, associate professor. E-mail: shuaizhang@cczu.edu.cn; DING Jianning, professor. E-mail: dingjn@cczu.edu.cn
About author:
LIU Wenwen(1997-), female, Master candidate. E-mail: 2356143925@qq.com
Supported by:
CLC Number:
LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell[J]. Journal of Inorganic Materials, 2021, 36(6): 629-636.
Fig. 2 (a,b) Surface and (c,d) cross sectional SEM images, (e,f) grain size distributions of FTO/TiO2/perovskite films (a, c, e) without and (b, d, f) with PLA
Fig. 3 (a) ATR-FT-IR spectra, ((b) magnified ATR-FT-LR spectra of rectangular area in (a)), (c) UV-Vis absorption spectra and (d) XRD patterns of FTO/TiO2/perovskite films with and without PLA
Device | JSC(SD)/(mA·cm-2) | VOC(SD)/V | FF(SD)/% | PCE(SD)/% |
---|---|---|---|---|
Without PLA | 23.84(0.74) | 1.07(0.02) | 76.80(1.15) | 19.49(0.48) |
With PLA | 24.37(0.50) | 1.07(0.02) | 78.74(1.43) | 20.55(0.39) |
Table 1 Mean values and standard deviation (SD) of photovoltaic parameters for PSC devices without and with PLA
Device | JSC(SD)/(mA·cm-2) | VOC(SD)/V | FF(SD)/% | PCE(SD)/% |
---|---|---|---|---|
Without PLA | 23.84(0.74) | 1.07(0.02) | 76.80(1.15) | 19.49(0.48) |
With PLA | 24.37(0.50) | 1.07(0.02) | 78.74(1.43) | 20.55(0.39) |
Fig. 5 Forward and reverse scan J-V curves of the optimal PSC devices (a) without and (b) with PLA, (c) comparison of the reverse J-V curves, and (d) external quantum efficiency spectra and integrated JSC curves for the optimal PSC devices without and with PLA
Fig. 7 (a) Schematic diagram of electron-only perovskite film device with PLA, and (b) SCLC measurements of electron-only perovskite film devices with and without PLA
Device | RS / (Ω·cm-2) | R1 / (Ω·cm-2) | R2 / (Ω·cm-2) |
---|---|---|---|
Without PLA (Illumination) | 1.80 | 58.70 | 7.90 |
With PLA (Illumination) | 1.43 | 15.74 | 40.49 |
Without PLA (Dark) | 0.78 | 3.46×105 | 2.27×104 |
With PLA (Dark) | 1.21 | 2.15×104 | 4.50×105 |
Table S1 EIS fitting parameters of PSC without and with PLA under illumination and in dark
Device | RS / (Ω·cm-2) | R1 / (Ω·cm-2) | R2 / (Ω·cm-2) |
---|---|---|---|
Without PLA (Illumination) | 1.80 | 58.70 | 7.90 |
With PLA (Illumination) | 1.43 | 15.74 | 40.49 |
Without PLA (Dark) | 0.78 | 3.46×105 | 2.27×104 |
With PLA (Dark) | 1.21 | 2.15×104 | 4.50×105 |
[1] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009,131(17):6050-6051.
DOI URL |
[2] | Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. |
[3] |
GREEN M A. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt: Res. Appl., 2009,17:183-189.
DOI URL |
[4] |
XIONG H, ZHANG B X, JIA W, et al. Polymer PVP additive for improving stability of perovskite solar cells. J. Inorg. Mater., 2019,34(1):96-102.
DOI URL |
[5] | YU S W, ZHAO Z W, ZHAO J J, et al. Research progress in novel in-situ integrative photovoltaic-storage tandem cells. J. Inorg. Mater., 2020,35(6):623-632. |
[6] |
CHU Z Y, LI G L, JIANG Z H, et al. Recent progress in high-quality perovskite CH3NH3PbI3 single crystal. J. Inorg. Mater., 2018,33(10):1035-1045.
DOI URL |
[7] |
PATIL J V, MALI S S, HONG C K. A thiourea additive-based quadruple cation lead halide perovskite with an ultra-large grain size for efficient perovskite solar cells. Nanoscale, 2019,11:21824-21833.
DOI URL |
[8] |
ZHANG S, LU Y T, LIN B C, et al. PVDF-HFP additive for visible-light-semitransparent perovskite films yielding enhanced photovoltaic performance. Sol. Energy Mat. Sol. C, 2017,170:178-186.
DOI URL |
[9] |
ZHENG X P, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy, 2017,2:17102.
DOI URL |
[10] |
DE ROO J, IBÁÑEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano, 2016,10:2071-2081.
DOI URL |
[11] |
YANG S, DAI J, YU Z H, et al. Tailoring passivation molecular structures for extremely small open circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc., 2019,141(14):5781-5787.
DOI URL |
[12] |
BARLY I L, DEQUILETTES D W, PAZOS-QUTON, et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat. Photonics, 2018,12:355-361.
DOI URL |
[13] |
YANG J, LIU C, CAI C, et al. High performance perovskite solar cells with excellent humidity and thermo stability via fluorinated perylenediimide. Adv. Energy. Mater., 2019,9(18):1900198.
DOI URL |
[14] |
ZHANG S, HU Z L, ZHANG J, et al. Interface engineering via phthalocyanine decoration of perovskite solar cells with high efficiency and stability. J. Power Sources, 2019,438:226987.
DOI URL |
[15] |
WANG H H, WANG Z W, YANG Z, et al. Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv. Mater., 2020,32(21):2000865.
DOI URL |
[16] |
NIU T Q, LU J, MUNIR R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater., 2018,30(16):1706576.
DOI URL |
[17] |
DE WOLF S, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett., 2014,5(6):1035-1039.
DOI URL |
[18] |
STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013,342(6156):341-344.
DOI URL |
[19] |
CHEN J H, ZUO L J, ZHANG Y Z, et al. High-performance thickness insensitive perovskite solar cells with enhanced moisture stability. Adv. Energy Mater., 2018,8(23):1800438.
DOI URL |
[20] |
WHEELER L M, SANEHIRA E M, MARSHALL A R, et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc., 2018,140(33):10504-10513.
DOI URL |
[21] |
IM J H, JANG I H, PELLET N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol., 2014,9(181):927-932.
DOI URL |
[22] |
LIU Y, MONOJIT B, LAWRENCE A R, et al. Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells. Adv. Energy Mater., 2015,6:1501606.
DOI URL |
[23] |
WU Y H, WANG P, ZHANG W H. Heterojunction engineering for high efficiency cesium formamidinium double-cation lead halide perovskite solar cells. ChemSusChem, 2018,11(5):837-842.
DOI URL |
[24] |
HOU Y, DU X Y, SIMON S, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017,358(6367):1192-1197.
DOI URL |
[25] |
ZHANG J, SUN Q, CHEN Q Y, et al. High efficiency planar p-i-n perovskite solar cells using low-cost fluorene-based hole transporting material. Adv. Funct. Mater, 2019,29:1900484.
DOI URL |
[26] | CHEN H Y, ZHAN Y, XU G Y, et al. Organic n-type molecule: managing the electronic states of bulk perovskite for high-performance photovoltaics. Adv. Funct. Mater., 2020,120(6):8267-8302. |
[27] |
DEQUILETTES D W, VORPAHL S M, STRANKS S D, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015,348(6235):683-686.
DOI URL |
[28] |
WANG L, LIU H, LIU C W, et al. Approaching optimal hole transport layers by organic monomolecular strategy for efficient inverted perovskite solar cells. J. Mater. Chem. A, 2020,4(6):1-21.
DOI URL |
[29] |
HOU M N, XU Y Z, ZHOU B, et al. Aryl diammonium iodide passivation for efficient and stable hybrid organ-inorganic perovskite solar cells. Adv. Funct. Mater., 2020,30(34):2002366.
DOI URL |
[30] |
SON D Y, KIM S G, SEO J Y, et al. Universal approach toward hysteresis free perovskite solar cell via defect engineering. J. Am. Chem. Soc., 2018,140(4):1358-1364.
DOI URL |
[31] |
GUERRERO A, GARCIA-BELMONTE, MORA-SERO I, et al. Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements. J. Phys. Chem. C, 2016,120(15):8023-8032.
DOI URL |
[32] |
WANG Q, MOSER J E, GRTZEL M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B, 2005,109(31):14945-53.
DOI URL |
[33] |
ZHANG S, DONG G Y, LIN B C, et al. A polymer gel electrolyte with an inverse opal structure and its effects on the performance of quasi-solid-state dye-sensitized solar cells. J. Power Sources, 2015,277:52-58.
DOI URL |
[34] |
ZHANG S, DONG G Y, LIN B C, et al. Performance enhancement of aqueous dye-sensitized solar cells via introduction of a quasi- solid-state electrolyte with an inverse opal structure. Sol Energy, 2016,127:19-27.
DOI URL |
[35] |
YANG J A, XIAO A D, XIE L S, et al. Precise control of PbI2 excess into grain boundary for efficacious charge extraction in off-stoichiometric perovskite solar cells. Electrochim. Acta, 2020,338:135697.
DOI URL |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[6] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[7] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[8] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[9] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[10] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[11] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[12] | MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395. |
[13] | WANG Ye, JIAO Yinan, GUO Junxia, LIU Huan, LI Rui, SHANG Zixuan, ZHANG Shidong, WANG Yonghao, GENG Haichuan, HOU Denglu, ZHAO Jinjin. Optimization of Interfacial Engineering of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(11): 1323-1330. |
[14] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[15] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||