Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (7): 745-752.DOI: 10.15541/jim20200484
• RESEARCH ARTICLE • Previous Articles Next Articles
LIN Ziyang1(), CHANG Yuchen2, WU Zhangfan1, BAO Rong3, LIN Wenqing3, WANG Deping1(
)
Received:
2020-08-20
Revised:
2020-09-18
Published:
2021-07-20
Online:
2020-10-10
Contact:
WANG Deping, professor. E-mail:wdpshk@tongji.edu.cn
About author:
LIN Ziyang(1996-), male, Master candidate. E-mail:lzyyymx@163.com
Supported by:
CLC Number:
LIN Ziyang, CHANG Yuchen, WU Zhangfan, BAO Rong, LIN Wenqing, WANG Deping. Different Simulated Body Fluid on Mineralization of Borosilicate Bioactive Glass-based Bone Cement[J]. Journal of Inorganic Materials, 2021, 36(7): 745-752.
Ion | Na+ | K+ | Mg2+ | Ca2+ | Cl- | HCO- 3 | HPO2- 4 | SO2- 4 | pH |
---|---|---|---|---|---|---|---|---|---|
Blood plasma | 142.0 | 5.0 | 1.5 | 2.5 | 103.0 | 27.0 | 1.0 | 0.5 | 7.2-7.4 |
SBF | 142.0 | 5.0 | 1.5 | 2.5 | 147.8 | 4.2 | 1.0 | 0.5 | 7.4 |
1.5SBF | 213.0 | 7.5 | 2.25 | 3.75 | 221.7 | 6.3 | 1.5 | 0.75 | 7.4 |
2Mg-1.5SBF | 213.0 | 7.5 | 4.5 | 3.75 | 226.2 | 6.3 | 1.5 | 0.75 | 3.5 |
Table 1 Composition of different SBFs/(mmol·L-1)
Ion | Na+ | K+ | Mg2+ | Ca2+ | Cl- | HCO- 3 | HPO2- 4 | SO2- 4 | pH |
---|---|---|---|---|---|---|---|---|---|
Blood plasma | 142.0 | 5.0 | 1.5 | 2.5 | 103.0 | 27.0 | 1.0 | 0.5 | 7.2-7.4 |
SBF | 142.0 | 5.0 | 1.5 | 2.5 | 147.8 | 4.2 | 1.0 | 0.5 | 7.4 |
1.5SBF | 213.0 | 7.5 | 2.25 | 3.75 | 221.7 | 6.3 | 1.5 | 0.75 | 7.4 |
2Mg-1.5SBF | 213.0 | 7.5 | 4.5 | 3.75 | 226.2 | 6.3 | 1.5 | 0.75 | 3.5 |
Fig. 2 Surface morphologies of BBG bone cements after being soaked in 1.5SBF containing 0.1 mol/L (a) aspartic acid, (b) glycine, (c) lysine, and (d) control group without amino acid for (1) 5, (2) 7 and (3) 14 d
Fig. 5 Surface morphologies of BBG bone cements after being soaked in 1.5SBF containing 0.2 mol/L (a) aspartic acid, (b) glycine and (c) lysine for (1) 5, (2)7 and (3) 14 d
[1] |
KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006,27(15):2907-2915.
DOI URL |
[2] | YILMAZ B, PAZARCEVIREN A E, TEZCANER A, et al. Historical development of simulated body fluids used in biomedical applications: A review. Microchemical Journal, 2020,155:104713. |
[3] |
PALAZZO B, WALSH D, IAFISCO M, et al. Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals. Acta Biomaterialia, 2009,5(4):1241-1252.
DOI URL |
[4] |
HUANG S, ZHOU K, LI Z. Inhibition mechanism of aspartic acid on crystal growth of hydroxyapatite. Transactions of Nonferrous Metals Society of China, 2007,17(3):612-616.
DOI URL |
[5] |
MARTINS M L, IESSI I L, QUINTINO M P, et al. Glucose is an active chemical agent on degradation of hydroxyapatite nanostructure. Materials Chemistry and Physics, 2020,240:122166.
DOI URL |
[6] |
LI Z C, REN Q, CUI J Y, et al. Comparing the efficacy of hydroxyapatite nucleation regulated by amino acids, poly-amino acids and an amelogenin-derived peptide. CrystEngComm, 2020,22:3814-3823.
DOI URL |
[7] |
WU Y Y, YE S, YAO A H, et al. Effect of gas-foaming porogen- NaHCO3 and citric acid on the properties of injectable macroporous borate bioactive glass cement. Journal of Inorganic Materials, 2017,32(7):777-784.
DOI URL |
[8] |
XIE X, PANG L B, YAO A H, et al. Nanocement produced from borosilicate bioactive glass nanoparticles composited with alginate. Australian Journal of Chemistry, 2019,72(5):354-361.
DOI URL |
[9] |
CUI X, ZHAO C J, GU Y F, et al. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone. Journal of Materials Science-Materials in Medicine, 2014,25(3):733-745.
DOI URL |
[10] |
JANG H L, JIN K, LEE J, et al. Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano, 2014,8(1):634-641.
DOI URL |
[11] |
LUNA-DOMINGUEZ J H, TELLEZ-JIMENEZ H, HERNANDEZ- COCOLETZI H, et al. Development and in vivo response of hydroxyapatite/whitlockite from chicken bones as bone substitute using a chitosan membrane for guided bone regeneration. Ceramics International, 2018,44(18):22583-22591.
DOI URL |
[12] |
KIM H D, JANG H L, AHN H Y, et al. Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials, 2017,112:31-43.
DOI URL |
[13] |
CHANG Y, ZHAO R, WANG H, et al. A novel injectable whitlockite-containing borosilicate bioactive glass cement for bone repair. Journal of Non-Crystalline Solids, 2020, 547: 120291-1-11.
DOI URL |
[14] |
YAO A H, WANG D P, HUANG W H, et al. In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. Journal of the American Ceramic Society, 2007,90(1):303-306.
DOI URL |
[15] | MARQUES M R C, LOEBENBERG R, ALMUKAINZI M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technologies, 2011,18(3):15-28. |
[16] |
ZHANG J T, LIU W Z, SCHNITZLER V, et al. Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomaterialia, 2014,10(3):1035-1049.
DOI URL |
[17] | ANDERSEN T, STRAND B L, FORMO K, et al. Alginates as biomaterials in tissue engineering. Carbohydrate Chemistry, 2011,37:227-258. |
[18] |
JANG H L, LEE H K, JIN K, et al. Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite. Journal of Materials Chemistry B, 2015,3(7):1342-1349.
DOI URL |
[19] |
IKAWA N, KIMURA T, OUMI Y, et al. Amino acid containing amorphous calcium phosphates and the rapid transformation into apatite. Journal of Materials Chemistry, 2009,19(28):4906-4913.
DOI URL |
[20] |
ZHANG G D, CHEN J D, YANG S, et al. Preparation of amino- acid-regulated hydroxyapatite particles by hydrothermal method. Materials Letters, 2011,65(3):572-574.
DOI URL |
[21] | 周杨. 羟基磷灰石微纳结构的制备及应用研究. 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2018. |
[22] | GUO Y, LI Y, LI L. Mechanism of nano hydroxyapatite crystallization under hydrothermal conditions. Journal of Civil Aviation University of China, 2007,25(4):26-30. |
[23] | WANG Y, WU J, RUAN Y, et al. Influence of aspartic acid concentration on shape of HAP. Technology and Development of Chemical Industry, 2017,46(8):21-23, 53. |
[24] |
WANG C F, JEONG K J, PARK H J, et al. Synthesis and formation mechanism of bone mineral, whitlockite nanocrystals in tri-solvent system. Journal of Colloid and Interface Science, 2020,569:1-11.
DOI URL |
[25] |
JANG H L, BIN ZHENG G, PARK J, et al. In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and beta-tricalcium phosphate. Advanced Healthcare Materials, 2016,5(1):128-136.
DOI URL |
[26] |
CHENG H, CHABOK R, GUAN X F, et al. Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomaterialia, 2018,69:342-351.
DOI URL |
[1] | LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite [J]. Journal of Inorganic Materials, 2024, 39(3): 313-320. |
[2] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[3] | LIU Yan, ZHANG Yufan, WANG Ximan, LI Ting, MA Wenting, YANG Fuwei, CHEN Liang, ZHAO Dongyue, YAN Xiaoqin. Consolidation of Fragile Weathered Bone Relics Using Hydroxyapatite Material as Consolidant [J]. Journal of Inorganic Materials, 2023, 38(11): 1345-1354. |
[4] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[5] | CHEN Yaling, SHU Song, WANG Shaoxin, LI Jianjun. Mn-HAP SCR Catalyst: Preparation and Sulfur Resistance [J]. Journal of Inorganic Materials, 2022, 37(10): 1065-1072. |
[6] | ZHU Yutong, TAN Peijie, LIN Hai, ZHU Xiangdong, ZHANG Xingdong. Injectable Hyaluronan/Hydroxyapatite Composite: Preparation, Physicochemical Property and Biocompatibility [J]. Journal of Inorganic Materials, 2021, 36(9): 981-990. |
[7] | WU Zhongcao, HUAN Zhiguang, ZHU Yufang, WU Chengtie. 3D Printing and Characterization of Microsphere Hydroxyapatite Scaffolds [J]. Journal of Inorganic Materials, 2021, 36(6): 601-607. |
[8] | WU Yonghao, LI Xiangfeng, ZHU Xiangdong, ZHANG Xingdong. Construction of Hydroxyapatite Nanoceramics with High Mechanical Strength and Efficiency in Promoting the Spreading and Viability of Osteoblasts [J]. Journal of Inorganic Materials, 2021, 36(5): 552-560. |
[9] | SONG Keke, HUANG Hao, LU Mengjie, YANG Anchun, WENG Jie, DUAN Ke. Hydrothermal Preparation and Characterization of Zn, Si, Mg, Fe Doped Hydroxyapatite [J]. Journal of Inorganic Materials, 2021, 36(10): 1091-1096. |
[10] | SHAO Yueting, ZHU Yingjie, DONG Liying, CAI Anyong. Nanocomposite “Xuan Paper” Made from Ultralong Hydroxyapatite Nanowires and Cellulose Fibers and Its Anti-mildew Properties [J]. Journal of Inorganic Materials, 2021, 36(1): 107-112. |
[11] | SUN Tuanwei,ZHU Yingjie. One-step Solvothermal Synthesis of Strontium-doped Ultralong Hydroxyapatite Nanowires [J]. Journal of Inorganic Materials, 2020, 35(6): 724-728. |
[12] | LIU Ziyang, GENG Zhen, LI Zhaoyang. Preparing Biomedical CaCO3/HA Composite with Oyster Shell [J]. Journal of Inorganic Materials, 2020, 35(5): 601-607. |
[13] | DAI Zhao,WANG Ming,WANG Shuang,LI Jing,CHEN Xiang,WANG Da-Lin,ZHU Ying-Chun. Zirconia Reinforced Trace Element Co-doped Hydroxyapatite Coating [J]. Journal of Inorganic Materials, 2020, 35(2): 179-186. |
[14] | FU Ya-Kang,WENG Jie,LIU Yao-Wen,ZHANG Ke-Hong. hBMP-2 Contained Composite Coatings on Titanium Mesh Surface: Preparation and hBMP-2 Release [J]. Journal of Inorganic Materials, 2020, 35(2): 173-178. |
[15] | ZHOU Zihang, WANG Qun, GE Xiang, LI Zhaoyang. Strontium Doped Hydroxyapatite Nanoparticles: Synthesis, Characterization and Simulation [J]. Journal of Inorganic Materials, 2020, 35(11): 1283-1289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||