Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (5): 461-470.DOI: 10.15541/jim20200416
Special Issue: 电致变色材料与器件; 【虚拟专辑】电致变色与热致变色材料; 电致变色专栏2021
• TOPLCAL SECTION • Previous Articles Next Articles
WANG Jinmin1,2(), HOU Lijun1, MA Dongyun1,2
Received:
2020-07-24
Revised:
2020-09-17
Published:
2021-05-20
Online:
2021-04-19
About author:
WANG Jinmin (1975-), male, professor. E-mail:wangjinmin@sspu.edu.cn;jmwang@usst.edu.cn
Supported by:
CLC Number:
WANG Jinmin, HOU Lijun, MA Dongyun. Molybdenum Oxide Electrochromic Materials and Devices[J]. Journal of Inorganic Materials, 2021, 36(5): 461-470.
Fig. 3 Application field of water/solvothermal method (a), schematic diagram of water/solvothermal method equipment (b), and general steps of water/solvothermal preparation (c)[40]
Fig. 5 Chronocoulometry of six- to ten-layer MoO3 ?lm after applying +1.5/-1.5 V for 15/15 s (a) and effect of the number of MoO3 thin film layers on its charge density (b)[26] Colouful figures are available on roebsite
Fig. 7 SEM images of α-MoO3 crystals with a multi-layer stack structure at different magnifications (a-c), SEM image of MoO3 crystals obtained by calcination of commercial molybdic acid (MoO3·H2O) (d), and SEM image of α-MoO3 stacking with 44 layers (e)[57]
Fig. 9 In-situ kinetic properties measured at 632.8 nm for W0.71Mo0.29O3 film, PEDOT:PSS film and W0.71Mo0.29O3/PEDOT:PSS film (a), coloration efficiencies (b), and cycling stabilities (c) of the electrodes[66]
Fig. 10 Schematic diagram of a complementary electrochromic battery (a), visible-near-infrared transmission spectra of single active layer electrochromic battery (b) and complementary electrochromic batteries (c), discharge curves (current density is 0.05 mA·cm-2) of single-layer device and complementary device (d), and complementary electrochromic batteries lighting up the LED for 10 min after being colored at -2.5 V (e)[70]
[1] |
WANG S Z, CAI S W, CAI W A, et al. Organic-inorganic hybrid electrochromic materials, polysilsesquioxanes containing triarylamine, changing color from colorless to blue. Scientific Reports, 2017,7(1):14627.
DOI URL PMID |
[2] |
WANG Z, WANG X Y, CONG S, et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry- perot nanocavities. Nature Communications, 2020,11(1):302.
DOI URL PMID |
[3] |
WANG Z, WANG X, CONG S, et al. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Materials Science and Engineering: R: Reports, 2020,140:100524.
DOI URL |
[4] |
HASANI A, LE Q V, NGUYEN T P, et al. Facile solution synthesis of tungsten trioxide doped with nanocrystalline molybdenum trioxide for electrochromic devices. Scientific Reports, 2017,7(1):13258.
DOI URL PMID |
[5] |
LIN Y S, TSAI T H, HUNG S C, et al. Enhanced lithium electrochromism of atmospheric pressure plasma jet-synthesized tungsten/ molybdenum oxide films for flexible electrochromic devices. Journal of Solid State Electrochemistry, 2013,17(4):1077-1088.
DOI URL |
[6] |
BECHINGER C, FERRERE S, ZABAN A, et al. Photoelectrochromic windows and displays. Nature, 1996,383(6601):608-610.
DOI URL |
[7] |
XIONG K, EMILSSON G, MAZIZ A, et al. Plasmonic metasufaces with conjugated polymers for flexible electronic paper in color. Advanced Materials, 2016,28(45):9956-9960.
DOI URL PMID |
[8] |
WANG J M, YU H Y, MA D Y. Progress in the preparation and application of nanostructured manganese dioxide. Journal of Inorganic Materials, 2020,35(12):1307-1314.
DOI URL |
[9] |
CHANG C C, CHI P W, CHANDAN P, et al. Electrochemistry and rapid electrochromism control of MoO3/V2O5 hybrid nanobilayers. Materials, 2019,12(15):2475.
DOI URL |
[10] |
XU T, WALTER E C, AGRAWAL A, et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nature Communications, 2016,7(1):10479.
DOI URL |
[11] |
PLATT J R. Electrochromism, a possible change of color producible in dyes by an electric field. The Journal of Chemical Physics, 1961,34(3):862-863.
DOI URL |
[12] |
SUI Q, REN X T, DAI Y X, et al. Piezochromism and hydrochromism through electron transfer: new stories for viologen materials. Chemical Science, 2017,8(4):2758-2768.
URL PMID |
[13] |
YU W H, ZHANG Y, KANG E T, et al. Electroless metallization of dielectric SiLK surfaces functionalized by viologen. Journal of The Electrochemical Society, 2003,150(8):F156-F163.
DOI URL |
[14] |
MI S, WU J C, LIU J, et al. AIEE-active and electrochromic bifunctional polymer and device composed thereof synchronously achieving electrochemical fluorescence switching and electrochromic switching. ACS Applied Materials & Interfaces, 2015,7(49):27511-27517.
URL PMID |
[15] |
CHEN X M, LIU H L, XU Z P, et al. Highly regiosymmetric homopolymer based on dioxythiophene for realizing water- processable blue-to-transmissive electrochrome. ACS Applied Materials & Interfaces, 2015,7(21):11387-11392.
DOI URL PMID |
[16] |
DEB S K. A novel electrophotographic system. Applied Optics, 1969,8(Suppl 1):192-195.
DOI URL |
[17] |
ATINAFU D G, DONG W, DU M. Controllable synthesis and surface modification of molybdenum oxide nanowires: a short review. Tungsten, 2019,1(4):258-265.
DOI URL |
[18] |
HE Y C, LI T Z, ZHONG X L, et al. Lattice and electronic structure variations in critical lithium doped nickel oxide thin film for superior anode electrochromism. Electrochimica Acta, 2019,316:143-151.
DOI URL |
[19] |
BULJA S, KOPF R, NOLAN K, et al. Tuneable dielectric and optical characteristics of tailor-made inorganic electro-chromic materials. Scientific Reports, 2017,7(1):13484.
URL PMID |
[20] |
MA Y, ZHANG X, YANG M, et al. Controlled growth of MoO3 nanorods on transparent conducting substrates Materials Letters, 2014,136:146-149.
DOI URL |
[21] |
ZHUO Q Q, TANG J J, SUN J, et al. High efficient reduction of graphene oxide via nascent hydrogen at room temperature. Materials, 2018,11(3):340.
DOI URL |
[22] |
LI Y B, BANDO Y, GOLBERG D, et al. Field emission from MoO3 nanobelts. Applied Physics Letters, 2002,81(26):5048.
DOI URL |
[23] |
CHOI H, HEO J H, HA S, et al. Facile scalable synthesis of MoO2 nanoparticles by new solvothermal cracking process and their application to hole transporting layer for CH3NH3PbI3 planar perovskite solar cells. Chemical Engineering Journal, 2017,310:179-186.
DOI URL |
[24] |
TAO T, CHEN Q Y, HU H P, et al. MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications Materials Letters, 2011,66(1):102-105.
DOI URL |
[25] |
ZENG L, CHENG C Y. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts. Hydrometallurgy, 2009,98(1):1-9.
DOI URL |
[26] |
LEMOS R M J, ALCÁZAR J C B, CARREÑO N L V, et al. Influence of molybdenum trioxide thin film thickness on its electrochemical properties. Molecular Crystals and Liquid Crystals, 2017,655(1):40-50.
DOI URL |
[27] |
YANG P H, SUN P, MAI W J. Electrochromic energy storage devices. Materials Today, 2016,19(7):394-402.
DOI URL |
[28] | ZHANG X, LI W J, LI Y, et al. Research progress of inorganic all-solid-state electrochromic devices. Materials Science and Technology, 2020,28(3):140-149. |
[29] | MORTIMER R J, ROSSEINSKY D R, MONK P M S. Electrochromic Materials and Devices. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015: 1-638. |
[30] |
JIA H X, CAO X, JIN P S. Advances in inorganic all-solid-state electrochromic materials and devices. Journal of Inorganic Materials, 2020,35(5):511-524.
DOI URL |
[31] |
ZHAO X H, WEI C, GAI Z Q, et al. Chemical vapor deposition and its application in surface modification of nanoparticles. Chemical Papers, 2020,74(3):767-778.
DOI URL |
[32] |
GESHEVA K A, CZIRAKI A, IVANOVA T, et al. Crystallization of chemically vapor deposited molybdenum and mixed tungsten/ molybdenum oxide films for electrochromic application. Thin Solid Films, 2007,515(11):4609-4613.
DOI URL |
[33] | IVANOVA T, GESHEVA K A, POPKIROV G, et al. Electrochromic properties of atmospheric CVD MoO3 and MoO3-WO3 films and their application in electrochromic devices. Materials Science & Engineering B, 2005,119(3):232-239. |
[34] |
ARROYO-HERNÁNDEZ M, ÁLVARO R, SERRANO S, et al. Catalytic growth of ZnO nanostructures by r.f. magnetron sputtering. Nanoscale Research Letters, 2011,6(1):1-6.
URL PMID |
[35] |
USHA N, SIVAKUMAR R, SANJEEVIRAJA C. Structural, optical and electrochromic properties of Nb2O5:MoO3 (95:5, 90:10, and 85:15) thin films prepared by RF magnetron sputtering technique. Materials Letters, 2018,229(15):189-192.
DOI URL |
[36] |
ALVARADO J A, MALDONADO A, JUAREZ H, et al. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation. Beilstein Journal of Nanotechnology, 2015,6:971-975.
DOI URL PMID |
[37] |
VARNAMKHASTI M G, FALLAH H R, ZADSAR M. Effect of heat treatment on characteristics of nanocrystalline ZnO films by electron beam evaporation. Vacuum, 2012,86(7):871-875.
DOI URL |
[38] | MIYATA N, SUZUKI T, OHYAMA R. Physical properties of evaporated molybdenum oxide films. Thin Solid Films, 1996,281:218-222. |
[39] | DIXIT D, MADHURI K V. Effect of oxygen partial pressure on the growth of molybdenum trioxide thin films. Materials Today: Proceedings, 2019,19:2688-2692. |
[40] |
YANG G J, PARK S J. Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials, 2019,12(7):1-18.
DOI URL |
[41] |
QURESHI N, ARBUJ S, SHINDE M, et al. Swift tuning from spherical molybdenum microspheres to hierarchical molybdenum disulfide nanostructures by switching from solvothermal to hydrothermal synthesis route. Nano Convergence, 2017,4(1):25.
DOI URL PMID |
[42] | SHI E W, XIA C T, WANG B G, et al. Development application and of hydrothermal method. Journal of Inorganic Materials, 1996,11(2):193-206. |
[43] |
ZHOU E, TIAN L L, CHENG Z F, et al. Design of NiO flakes@CoMoO4 nanosheets core-shell architecture on Ni foam for high- performance supercapacitors. Nanoscale Research Letters, 2019,14(1):1-11.
URL PMID |
[44] |
YAO B, HUANG L, ZHANG J, et al. Flexible transparent molybdenum trioxide nanopaper for energy storage. Advanced Materials, 2016,28(30):6353-6358.
DOI URL PMID |
[45] |
HE S H, LI W D, FENG L, et al. Rational interaction between the aimed gas and oxide surfaces enabling high-performance sensor: the case of acidic α-MoO3 nanorods for selective detection of triethylamine Journal of Alloys and Compounds, 2019,783:574-582.
DOI URL |
[46] |
JITTIARPORN P, BADILESCU S, SAWAFTA M N A, et al. Electrochromic properties of Sol-Gel prepared hybrid transition metal oxides-a short review. Journal of Science: Advanced Materials and Devices, 2017,2(3):286-300.
DOI URL |
[47] |
WANG Y H, BOUCHNEB M, ALAUZUN J G, et al. Tuning texture and morphology of mesoporous TiO2 by non-hydrolytic Sol- Gel syntheses. Molecules, 2018,23(11):3006.
DOI URL |
[48] |
DHANASANKAR M, PURUSHOTHAMAN K K, MURALIDHARAN G. Enhanced electrochromism in cerium doped molybdenum oxide thin films. Materials Research Bulletin, 2010,45(12):1969-1972.
DOI URL |
[49] | ZHANG J Y, YU Z R, DU J H. Fabrication and electrochromic properties of NiO electrodeposit films. Journal of Chinese Electron Microscopy Society, 1997,16(4):451-452. |
[50] | WEN Y Y, ZHONG X H, HONG Y Z, et al. Fabrication of molybdenum oxides/carbon nanotube composite fibers by electrochemical deposition and its electrochemical behavior. Journal of the Chinese Ceramic Society, 2012,40(8):1220-1223. |
[51] |
ZHUZHEL’SKII D V, YALDA K D, SPIRIDONOV V N, et al. Electrochemical deposition of molybdenum oxide into films of poly (3,4-ethylenedioxythiophene) conducting polymer on glassy carbon substrates. Russian Journal of Applied Chemistry, 2016,89(8):1252-1260.
DOI URL |
[52] |
KÄRBER E, KATERSKI A, ACIK O I, et al. Low-cost plasmonic solar cells prepared by chemical spray pyrolysis. Beilstein Journal of Nanotechnology, 2014,5(1):2398-2402.
DOI URL |
[53] |
DUNDAR I, KRICHEVSKAYA M, KATERSKI A, et al. TiO2 thin films by ultrasonic spray pyrolysis as photocatalytic material for air purification. Royal Society Open Science, 2019,6(2):181578.
DOI URL PMID |
[54] |
CHO J S. Large scale process for low crystalline MoO3-carbon composite microspheres prepared by one-step spray pyrolysis for anodes in lithium-ion batteries. Nanomaterials, 2019,9(4):539.
DOI URL |
[55] |
MOUSAVI-ZADEH S H, RAHMANI M B. Synthesis and ethanol sensing characteristics of nanostructured MoO3:Zn thin films. Surface Review and Letters, 2018,25(4):1850046.
DOI URL |
[56] | YU H, LI Y, ZHAO L, et al. Novel MoO3-TiO2 composite nanorods films with improved electrochromic performance. Materials Letters, 2016,169:65-68. |
[57] |
MARTíN-RAMOS P, FERNÁNDEZ-COPPEL I, AVELLA M, et al. α-MoO3 crystals with a multilayer stack structure obtained by annealing from a lamellar MoS2/g-C3N4 nanohybrid. Nanomaterials, 2018,8(7):559.
DOI URL |
[58] | ZHANG Y Z, HUANG Y S, CAO Y Z, et al. Synthesis and electro- photochromic properties of lithium-doped MoO3 films Chinese Journal of Liquid Crystals and Displays, 2002,17(3):163-168. |
[59] | MAHAJAN S S, MUJAWAR S H, SHINDE P S, et al. Structural, morphological, optical and electrochromic properties of Ti-doped MoO3 thin films Solar Energy Materials and Solar Cells, 2009,93(2):183-187. |
[60] | LAYEGH M, GHODSI F E, HADIPOUR H. Experimental and theoretical study of Fe doping as a modifying factor in electrochemical behavior of mixed-phase molybdenum oxide thin films. Applied Physics A: Materials Science & Processing, 2019,126(1):372-387. |
[61] | KAMOUN OLFA, MAMI A, AMARA M A, et al. Nanostructured Fe, Co-codoped MoO3 thin films Micromachines, 2019,10(2):138. |
[62] | ZUO Y, MA D Y, XU Z P, et al. Hydrothermal growth, device preparation and electrochromic properties of nano-molybdenum oxide film. Journal of Shanghai Second Polytechnic University, 2017,34(2):81-86. |
[63] | LIU S, XU Z P, MA D Y, et al. Preparation of MoO3 thin film by MoS2 oxidation method, device assembly and electrochromic properties. Journal of Shanghai Second Polytechnic University, 2018,35(2):111-116. |
[64] |
KARTEN K, HEIN A, CIOBARU M, et al. Complementary hybrid electrodes for high contrast electrochromic devices with fast response. Nature Communications, 2019,10(1):4874.
DOI URL PMID |
[65] | ZHANG G, ZHANG W Z, WANG S M. Preparation of molybdenum oxide/polypyrrole composite membrane and study on its discoloration properties. Journal of Xi'an University of Technology, 2018,38(1):1-6, 13. |
[66] |
LI H Z, MCRAE L, ELEZZABI A Y. Solution-processed interfacial PEDOT:PSS assembly into porous tungsten molybdenum oxide nanocomposite films for electrochromic applications. ACS Applied Materials & Interfaces, 2018,10(12):10520-10527.
DOI URL PMID |
[67] |
WANG W Q, WANG X L, XIA X H, et al. Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window. Nanoscale, 2018,10(17):8162-8169.
DOI URL PMID |
[68] |
WANG J M, ZHANG L, YU L, et al. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery application. Nature Communications, 2014,5:4921.
DOI URL PMID |
[69] |
CONG S, TIAN Y, LI Q W, et al. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Advanced Materials, 2014,26(25):4260-4267.
DOI URL PMID |
[70] | LI H Z, MCRAE L, FIRBY C J, et al. Nanohybridization of molybdenum oxide with tungsten molybdenum oxide nanowires for solution-processed fully reversible switching of energy storing smart windows. Nano Energy, 2018,47:130-139. |
[71] | YANG B, MA D Y, ZHENG E M, et al. A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film. Solar Energy Materials and Solar Cells, 2019,192:1-7. |
[1] | SHEN Hao, CHEN Qianqian, ZHOU Boxiang, TANG Xiaodong, ZHANG Yuanyuan. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(9): 1022-1028. |
[2] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[3] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[4] | QUAN Wenxin, YU Yiping, FANG Bing, LI Wei, WANG Song. Oxidation Behavior and Meso-macro Model of Tubular C/SiC Composites in High-temperature Environment [J]. Journal of Inorganic Materials, 2024, 39(8): 920-928. |
[5] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[6] | HE Sizhe, WANG Junzhou, ZHANG Yong, FEI Jiawei, WU Aimin, CHEN Yifeng, LI Qiang, ZHOU Sheng, HUANG Hao. Fe/Submicron FeNi Soft Magnetic Composites with High Working Frequency and Low Loss [J]. Journal of Inorganic Materials, 2024, 39(8): 871-878. |
[7] | ZHAO Zhihan, GUO Peng, WEI Jing, CUI Li, LIU Shanze, ZHANG Wenlong, CHEN Rende, WANG Aiying. Ti Doped Diamond Like Carbon Films: Piezoresistive Properties and Carrier Transport Behavior [J]. Journal of Inorganic Materials, 2024, 39(8): 879-886. |
[8] | WU Xiangquan, TENG Jiachen, JI Xiangxu, HAO Yubo, ZHANG Zhongming, XU Chunjie. Textured Porous Al2O3-SiO2 Composite Ceramic Platelet-sphere Slurry: Characteristics and Simulation of Light Intensity Distribution [J]. Journal of Inorganic Materials, 2024, 39(7): 769-778. |
[9] | LI Jiaqi, LI Xiaosong, LI Xuanhe, ZHU Xiaobing, ZHU Aimin. Transition Metal-doped Manganese Oxide: Synthesis by Warm Plasma and Electrocatalytic Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2024, 39(7): 835-844. |
[10] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[11] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[12] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[13] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[14] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[15] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||