Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (2): 152-160.DOI: 10.15541/jim20200144
Special Issue: 电致变色材料与器件; 功能材料论文精选(2021); 【虚拟专辑】电致变色与热致变色材料; 电致变色专栏2021
• TOPLCAL SECTION: Electrochromic Materials and Devices (Contributing Editor: DIAO Xungang, WANG Jinmin) • Previous Articles Next Articles
ZHOU Kailing(), WANG Hao, ZHANG Qianqian, LIU Jingbing, YAN Hui
Received:
2020-03-23
Revised:
2020-07-09
Published:
2021-02-20
Online:
2020-09-09
About author:
ZHOU Kailing(1990-), male, PhD candidate. E-mail: zkling@emails.bjut.edu.cn
Supported by:
CLC Number:
ZHOU Kailing, WANG Hao, ZHANG Qianqian, LIU Jingbing, YAN Hui. Dynamic Process of Ions Transport and Cyclic Stability of WO3 Electrochromic Film[J]. Journal of Inorganic Materials, 2021, 36(2): 152-160.
Fig. 1 Charge-time curves (a), response current-time curves (b), response potential-time curves (c), and in-situ transmittance curves (d) of WO3 films under different ions insertion flux with 2, 10 and 20 mC·cm-2·s-1
Fig. 2 Evolution of current-time curves of WO3 film by fixing at 20.00 mC·cm-2 under different ions insertion flux with (a) 2, (b) 10, and (c) 20 mC·cm-2·s-1, and contrast of current density evolution (d)
Fig. 3 Evolution of the extracted charge density of WO3 film under different ions insertion flux with (a) 2,(b) 10 and (c) 20 mC·cm-2·s-1, and evolution of trapped ions density upon cycling (d)
Fig. 4 Evolution of potential-time curves of WO3 film under different ions insertion flux with (a) 2, (b) 10 and (c) 20 mC·cm-2·s-1, and contrast of potentials decay (d)
Fig. 5 In situ record of the transmittance of WO3 film at λ=550 nm during the electrochemical test (a) and the transmittance evolution of WO3 film under different ions insertion flux with (b) 2, (c) 10, and (d) 20 mC·cm-2·s-1
Fig. 6 SEM images of WO3 film with different conditions (a) WO3 film at the initial state; (b) WO3-2 film after 5000 cycles; (c) WO3-10 film after 5000 cycles; (d) WO3-20 film after 5000 cycles. The corresponding photographs are inserted
[1] | PENG M, DONG Y Z, SONG L X, et al. Structure and electrochromic properties of titanium-doped WO3 thin film by sputtering. Journal of Inorganic Materials, 2017,32(3):287-292. |
[2] | JIA H, XIANG C X, JIN P S. Advances in inorganic all-solid-state electrochromic materials and devices. Journal of Inorganic Materials, 2020,35(5):511-524. |
[3] | WANG J, KHOO E, LEE P S, et al. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. The Journal of Physical Chemistry C, 2008,112(37):14306-14312. |
[4] | ZHAO Q, FANG Y, QIAO K, et al. Printing of WO3/ITO nanocomposite electrochromic smart windows. Solar Energy Materials and Solar Cells, 2019,194:95-102. |
[5] | LU S J, ZHAO B W, WANG H, et al. Electrochromic properties of PEG-modified tungsten oxide thin films. Journal of Inorganic Materials, 2017,32(2):185-190. |
[6] | GARCIA-BELMONTE G, BUENO P R, FABREGAT-SANTIAGO F, et al. Relaxation processes in the coloration of amorphous WO3 thin films studied by combined impedance and electro-optical measurements. Journal of Applied Physics, 2004,96(1):853-859. |
[7] | HO C, RAISTRICK I, HUGGINS R. Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. Journal of The Electrochemical Society, 1980,127(2):343-350. |
[8] | MACDONALD J R. Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987,223(1/2):25-50. |
[9] | INABA H, IWAKU M, TATSUMA T, et al. Electrochemical intercalation of cations into an amorphous WO3 film and accompanying changes in mass and surface properties. Journal of Electroanalytical Chemistry, 1995,387(1/2):71-77. |
[10] | AU B, CHAN K, PANG W, et al. In effect of bias voltage on the electrochromic properties of WO3 films. Journal of Physics: Conference Series, 2019,1349:012040. |
[11] | BATHE S R, ILLA M S, NARAYAN R, et al. Electrochromism in polymer-electrolyte-enabled nanostructured WO3: active layer thickness and morphology on device performance. ChemNanoMat, 2018,4(2):203-212. |
[12] | BATHE S R, PATIL P. Electrochromic characteristics of fibrous reticulated WO3 thin films prepared by pulsed spray pyrolysis technique. Solar Energy Materials and Solar Cells, 2007,91(12):1097-1101. |
[13] | ZHOU K, WANG H, ZHANG Y, et al. Understand the degradation mechanism of electrochromic WO3 films by double-step chronoamperometry and chronocoulometry techniques combined with in situ spectroelectrochemical study. Electroanalysis, 2017,29(6):1573-1585. |
[14] | DAUTREMONT-SMITH W, GREEN M, KANG K S. Optical and electrical properties of thin films of WO3 electrochemically coloured. Electrochimica Acta, 1977,22(7):751-759. |
[15] | BAECK S H, CHOI K S, JARAMILLO T F, et al. Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Advanced Materials, 2003,15(15):1269-1273. |
[16] | DEEPA M, SRIVASTAVA A, SOOD K, et al. Nanostructured mesoporous tungsten oxide films with fast kinetics for electrochromic smart windows. Nanotechnology, 2006,17(10):2625. |
[17] | KROL J J, STRATHMANN H, WESSLING M. Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes. Journal of Membrane Science, 1999,162(1/2):155-164. |
[18] | PISMENSKAIA N, SISTAT P, HUGUET P, et al. Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. Journal of Membrane Science, 2004,228(1):65-76. |
[19] | SISTAT P, POURCELLY G. Chronopotentiometric response of an ion-exchange membrane in the underlimiting current-range. Transport phenomena within the diffusion layers. Journal of Membrane Science, 1997,123(1):121-131. |
[20] | BARD A J, FAULKNER L R. Electrochemical Methods: Fundamentals and Applications. New Jersey: Wiley, 1980: 669-676. |
[21] | SAWYER D T, ROBERTS J L. Experimental Electrochemistry for Chemists. Wiley, 1974: 1765-1766. |
[22] | ZHOU K, WANG H, ZHANG Y, et al. An advanced technique to evaluate the electrochromic performances of NiO films by multi-cycle double-step potential chronocoulometry. Journal of The Electrochemical Society, 2016,163(10):H1033-H1040. |
[23] | WEN R T, GRANQVIST C G, NIKLASSON G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nature Materials, 2015,14(10):996-1001. |
[24] | ZHOU K, WANG H, LIU J, et al. The mechanism of trapped ions eroding the electrochromic performances of WO3 thin films. International Journal Electrochemical Science, 2018,13:7335-7346. |
[25] | LEE S H, DESHPANDE R, PARILLA P, et al. Crystalline WO3 nanoparticles for highly improved electrochromic applications. Advanced Materials, 2006,18(6):763-766. |
[26] |
SCHERER M R, STEINER U. Efficient electrochromic devices made from 3D nanotubular gyroid networks. Nano Letters, 2012,13(7):3005-3010.
DOI URL PMID |
[27] | BISQUERT J, VIKHRENKO V S. Analysis of the kinetics of ion intercalation: two state model describing the coupling of solid state ion diffusion and ion binding processes. Electrochimica Acta, 2003,47(24):3977-3988. |
[28] | BISQUERT J. Analysis of the kinetics of ion intercalation: ion trapping approach to solid-state relaxation processes. Electrochimica Acta, 2002,47(15):2435-2449. |
[29] | HASHIMOTO S, MATSUOKA H. Lifetime of electrochromism of amorphous WO3-TiO2 thin films. Journal of The Electrochemical Society, 1991,138(8):2403. |
[30] | HASHIMOTO S, MATSUOKA H, KAGECHIKA H, et al. Degradation of electrochromic amorphous WO3 film in lithium-salt electrolyte. Journal of The Electrochemical Society, 1990,137(4):1300. |
[31] | HEPEL M, REDMOND H, DELA I. Electrochromic WOx films with reduced lattice deformation stress and fast response time. Electrochimica Acta, 2007,52(11):3541-3549. |
[32] | KONDALKAR V V, PATIL P B, MANE R M, et al. Electrochromic performance of nickel oxide thin film: synthesis via electrodeposition technique. Macromolecular Symposia, 2016,361(1):47-50. |
[33] |
WEN R T, NIKLASSON G A, GRANQVIST C G. Sustainable rejuvenation of electrochromic WO3 films. ACS Applied Materials & Interfaces, 2015,7(51):28100.
URL PMID |
[34] | ZELLER H, BEYELER H. Electrochromism and local order in amorphous WO3. Applied Physics, 1977,13(3):231-237. |
[35] | GABRUSENOKS J, CIKMACH P, LUSIS A, et al. Electrochromic colour centres in amorphous tungsten trioxide thin films. Solid State Ionics, 1984,14(1):25-30. |
[36] | HEPEL M, REDMOND H, DELA I. Electrochromic WO3-x films with reduced lattice deformation stress and fast response time. Electrochimica Acta, 2007,52(11):3541-3549. |
[37] | BUENO P, FARIA R, AVELLANEDA C, et al. Li+ insertion into pure and doped amorphous WO3 films. Correlations between coloration kinetics, charge and mass accumulation. Solid State Ionics, 2003,158(3/4):415-426. |
[1] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[2] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[3] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[6] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[7] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[8] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[9] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[10] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[11] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[12] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[13] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[14] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[15] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||