Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (1): 88-94.DOI: 10.15541/jim20200142
Special Issue: 能源材料论文精选(2021)
• RESEARCH LETTERS • Previous Articles Next Articles
LIU Yaxin1,2,WANG Min1,2,SHEN Meng1,2,WANG Qiang1,2,ZHANG Lingxia1,2
Received:
2020-03-20
Revised:
2020-05-07
Published:
2021-01-20
Online:
2020-05-20
About author:
LIU Yaxin (1994-), male, Master. E-mail: liuyaxin@student.sic.ac.cn
Supported by:
CLC Number:
LIU Yaxin, WANG Min, SHEN Meng, WANG Qiang, ZHANG Lingxia. Bi-doped Ceria with Increased Oxygen Vacancy for Enhanced CO2 Photoreduction Performance[J]. Journal of Inorganic Materials, 2021, 36(1): 88-94.
[1] | CHANG X, WANG T, GONG J . CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science, 2016,9(7):2177-2196. |
[2] | INDRAKANTI V P, KUBICKI J D, SCHOBERT H H . Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy & Environmental Science, 2009,2(7):745-750. |
[3] | QI Y, SONG L, OUYANG S , et al. Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In2O3-x nanosheets with bifunctional oxygen vacancies. Advanced Materials, 2019,32:1903915. |
[4] | LINIC S, CHRISTOPHER P, INGRAM D B . Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 2011,10(12):911-921. |
[5] | LI J, SONG C F, PANG X J . Controllable synthesis and photocatalytic performance of BiVO4 under visible-light irradiation. Journal of Inorganic Materials, 2019,34(2):164-172. |
[6] | SUN Y, WANG H, XING Q , et al. The pivotal effects of oxygen vacancy on Bi2MoO6: promoted visible light photocatalytic activity and reaction mechanism. Chinese Journal of Catalysis, 2019,40(5):647-655. |
[7] | WANG M, SHEN M, JIN X , et al. Oxygen vacancy generation and stabilization in CeO2-x by Cu introduction with improved CO2 photocatalytic reduction activity. ACS Catalysis, 2019,9(5):4573-4581. |
[8] | LIU Y, YU S, ZHENG K W , et al. NO Photo-oxidation and in-situ DRIFTS studies on N-doped Bi2O2CO3/CdSe quantum dot composite. Journal of Inorganic Materials, 2019,34(4):425-432. |
[9] | JIANG D, WANG W, GAO E , et al. Bismuth-induced integration of solar energy conversion with synergistic low-temperature catalysis in Ce1-xBixO2-δ nanorods. Journal of Physical Chemistry C, 2013,117(46):24242-24249. |
[10] | SHAMAILA S, SAJJAD A K L, CHEN F, et al. Study on highly visible light active Bi2O3 loaded ordered mesoporous titania. Applied Catalysis B Environmental, 2010,94(3/4):272-280. |
[11] | YANG G H, MIAO W K, YUAN Z M , et al. Bi quantum dots obtained via in situ photodeposition method as a new photocatalytic CO2 reduction cocatalyst instead of noble metals: borrowing redox conversion between Bi2O3 and Bi. Applied Catalysis B Environmental, 2018,237:302-308. |
[12] | GAO Y, LI R, CHEN S , et al. Morphology-dependent interplay of reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals. Physical Chemistry Chemical Physics, 2015,17(47):31862-31871. |
[13] | CHEN D, HE D, LU J , et al. Investigation of the role of surface lattice oxygen and bulk lattice oxygen migration of cerium-based oxygen carriers: XPS and designed H2-TPR characterization. Applied Catalysis B Environmental, 2017,218:249-259. |
[14] | WEBER W H, HASS K C, MCBRIDE J R . Raman study of CeO2: second-order scattering, lattice dynamics, and particle-size effects. Physical Review B: Condensed Matter, 1993,48(1):178-185. |
[15] | LI Y F, SOHEILNIA N, GREINER M , et al. Pd@HyWO3-x nanowires efficiently catalyze the CO2 heterogeneous reduction reaction with a pronounced light effect. ACS Applied Materials & Interfaces, 2019,11(6):5610-5615. |
[16] | ZHU S, LI T, CAI W B , et al. CO2 Electrochemical reduction as probed through infrared spectroscopy. ACS Energy Letters, 2019,4(3):682-689. |
[17] | GAMARRA D, FERNANDEZ-GARCIA M, BELVER C , et al. Operando DRIFTS and XANES study of deactivating effect of CO2 on a Ce0.8Cu0.2O2. Journal of Physical Chemistry C, 2010,114(43):18576-18582. |
[18] | WANG Y, ZHAO J, WANG T , et al. CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: surface species and their reactivity. Journal of Catalysis, 2016,337:293-302. |
[19] | LI J, ZHANG W, RAN M , et al. Synergistic integration of Bi metal and phosphate defects on hexagonal and monoclinic BiPO4: enhanced photocatalysis and reaction mechanism. Applied Catalysis B Environmental, 2019,243:313-321. |
[20] | LI X, ZHANG W, LI J , et al. Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3. Applied Catalysis B: Environmental, 2019,241:187-195. |
[21] | RINGE S, MORALES-GUIO C G, CHEN L D, et al. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on gold. Nature Communications, 2020,11(1):33. |
[22] | DUNWELL M, LU Q, HEYES J M , et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. Journal of the American Chemical Society, 2017,139(10):3774-3783. |
[23] | ZHU S, JIANG B, CAI W B , et al. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 Electrochemical reduction reaction on Cu surfaces. Journal of the American Chemical Society, 2017,139(44):15664-15667. |
[24] | WUTTIG A, YOON Y, RYU J , et al. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. Journal of the American Chemical Society, 2017,139(47):17109-17113. |
[25] | YE L, DENG Y, WANG L , et al. Bismuth-based photocatalysts for solar photocatalytic carbon dioxide conversion. ChemSusChem, 2019,12(16):3671-3701. |
[26] | GRACIANI J, MUDIYANSELAGE K, XU F , et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science, 2014,345(6196):546-550. |
[1] | WANG Hao, LIU Xuechao, ZHENG Zhong, PAN Xiuhong, XU Jintao, ZHU Xinfeng, CHEN Kun, DENG Weijie, TANG Meibo, GUO Hui, GAO Pan. Performance of Lateral 4H-SiC Photoconductive Semiconductor Switches by Extrinsic Backside Trigger [J]. Journal of Inorganic Materials, 2024, 39(9): 1070-1076. |
[2] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[3] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[4] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
[5] | JIN Yuxiang, SONG Erhong, ZHU Yongfu. First-principles Investigation of Single 3d Transition Metals Doping Graphene Vacancies for CO2 Electroreduction [J]. Journal of Inorganic Materials, 2024, 39(7): 845-852. |
[6] | SHI Tong, GAN Qiaowei, LIU Dong, ZHANG Ying, FENG Hao, LI Qiang. Boost Electrochemical Reduction of CO2 to Formate Using a Self-supporting Bi@Cu Nanotree Electrode [J]. Journal of Inorganic Materials, 2024, 39(7): 810-818. |
[7] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[8] | ZHANG Yuyu, WU Yicheng, SUN Jia, FU Qiangang. Preparation and Wave-absorbing Properties of Polymer-derived SiHfCN Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 681-690. |
[9] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[10] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[11] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[12] | WANG Weihua, ZHANG Leining, DING Feng, DAI Bing, HAN Jiecai, ZHU Jiaqi, JIA Yi, Yang Yu. Heteroepitaxial Diamond Nucleation and Growth on Iridium: First-principle Calculation [J]. Journal of Inorganic Materials, 2024, 39(4): 416-422. |
[13] | YANG Bo, LÜ Gongxuan, MA Jiantai. Electrocatalytic Water Splitting over Nickel Iron Hydroxide-cobalt Phosphide Composite Electrode [J]. Journal of Inorganic Materials, 2024, 39(4): 374-382. |
[14] | WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383-389. |
[15] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||