Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (12): 1307-1314.DOI: 10.15541/jim20200105
Special Issue: 功能材料论文精选(2020); 【虚拟专辑】电致变色与热致变色材料
Previous Articles Next Articles
WANG Jinmin(),YU Hongyu,MA Dongyun
Received:
2020-03-02
Revised:
2020-05-07
Published:
2020-12-20
Online:
2020-06-09
About author:
WANG Jinmin (1975–), male, professor. E-mail: wangjinmin@sspu.edu.cn
Supported by:
CLC Number:
WANG Jinmin, YU Hongyu, MA Dongyun. Progress in the Preparation and Application of Nanostructured Manganese Dioxide[J]. Journal of Inorganic Materials, 2020, 35(12): 1307-1314.
Fig. 4 Capacitance retention of δ-MnO2 at current density of 2.1 A/g in 1 mol/L Na2SO4 electrolyte with inset showing the corresponding charge-discharge curves[16]
Fig. 5 UV-Vis transmittance spectra of (a) PANI, (b) MnO2, and (c) PANI/MnO2 at different potentials with insets in (c) showing the photos of PANI/MnO2 hybrid film electrodeposited on ITO/glass at bleached (upper, light greenish yellow) and colored state (lower, dark bluish green), and (d) switching curves comparison between PANI, MnO2, and PANI/MnO2 hybrid films at λ680 nm (-0.4 V/+0.4 V, 60 s/cycle)[47]
Fig. 6 (a) SEM images of rod-like α-MnO2, wire-like α-MnO2, tube-like α-MnO2, and flower-like Mn2O3; (b) Toluene conversion as a function of reaction temperature over the catalysts under the conditions of a toluene concentration of 10-3, toluene/ O2 = 1/400 (mol/mol), and a space velocity of 20000 mL/(g?h)[51]
Fig. 7 Measurement of FP following the addition of various concentrations of Ag+ in the presence of MnO2 nanosheets (80 μg/mL) with inset showing the linear relationship between ΔFP and Ag+ concentration[52]
[1] |
SUN K, LI S Y, WAIGI M G, et al. Nano-MnO2-mediated transformation of triclosan with humic molecules present: kinetics, products, and pathways. Environmental Science & Pollution Research, 2018,25(15):14416-14425.
DOI URL PMID |
[2] | SEO J K, SHIN J W, CHUNG H, et al. Intercalation and conversion reactions of nanosized β-MnO2 cathode in the secondary Zn/MnO2 alkaline battery. The Journal of Physical Chemistry C, 2018,122(21):11177-11185. |
[3] | XUE F, WU S, WANG M X, et al. A three-dimensional graphene/ CNT/MnO2 hybrid as supercapacitor electrode. Integrated Ferroelectrics, 2018,190(1):156-163. |
[4] | GU X, YUE J, LI L J, et al. General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes. Electrochimica Acta, 2015,184:250-256. |
[5] | FENG Q, KANOH H, OOI K. Manganese oxide porous crystals. Journal of Materials Chemistry, 1999,9(2):319-333. |
[6] | POST J E. Manganese oxide minerals: crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences, 1999,96(7):3447-3454. |
[7] | JIA Z J, WANG J, WANG Y, et al. Interfacial synthesis of δ-MnO2 nano-sheets with a large surface area and their application in electrochemical capacitors. Journal of Materials Science & Technology, 2016,32(2):147-152. |
[8] | HUANG Y J, LI W S. Preparation of manganese dioxide for oxygen reduction in zinc air battery by hydro thermal method. Journal of Inorganic Materials, 2013,28(3):341-346. |
[9] | WEN J G, RUAN X Y, ZHOU Z T. Characterization of MnO2 aerogels prepared via supercritical drying technique. Journal of Inorganic Materials, 2009,24(3):521-524. |
[10] | XIAO X Z, YI Q F. Synthesis and electochemical capacity of MnO2/SMWCNT/PANI ternarycomposites. Journal of Inorganic Materials, 2013,28(8):825-830. |
[11] |
DARR J A, ZHANG J Y, MAKWANA N M, et al. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chemical Reviews, 2017,117(17):11125-11238.
DOI URL PMID |
[12] | ZHAO P, YAO M Q, REN H B, et al. Nanocomposites of hierarchical ultrathin MnO2 nanosheets/hollow carbon nanofibers for high-performance asymmetric supercapacitors. Applied Surface Science, 2019,463:931-938. |
[13] |
WU F F, GAO X B, XU X L, et al. Boosted Zn storage performance of MnO2 nanosheet-assembled hollow polyhedron grown on carbon cloth via a facile wet-chemical synthesis. ChemSusChem, 2020,13(6):1537-1545.
DOI URL PMID |
[14] | LU C J, ZHU F Q, YIN J G, et al. Synthesis of α-MnO2 nanowires via facile hydrothermal method and their application in Li-O2 battery. Journal of Inorganic Materials, 2018,33(9):1029-1034. |
[15] | ZHU K, WANG C, CAMARGO P H C, et al. Investigating the effect of MnO2 band gap in hybrid MnO2-Au materials over the SPR-mediated activities under visible light. Journal of Materials Chemistry A, 2019,7(3):925-931. |
[16] | WANG L, MA W L, LI Y H, et al. Synthesis of δ-MnO2 with nanoflower-like architecture by a microwave-assisted hydrothermal method. Journal of Sol-Gel Science and Technology, 2017,82:85-91. |
[17] | MA Z C, WEI X Y, XING S T, et al. Hydrothermal synthesis and characterization of surface-modified δ-MnO2 with high Fenton-like catalytic activity. Catalysis Communications, 2015,67:68-71. |
[18] | LIU D Y, DONG L M, SHAN L W, et al. Preparation of Fe-MnO2/RGO electrode and electrochemical properties. Ferroelectrics, 2019,546(1):41-47. |
[19] | XIE Y M, WANG L J, GUO Q Y, et al. Preparation of MnO2/porous carbon material with core-shell structure and its application in supercapacitor. Journal of Materials Science Materials in Electronics, 2018,29(10):1-8. |
[20] | MATHUR A, HALDER A. One step synthesis of bifunctional iron-doped manganese oxide nanorods for rechargeable zinc-air batteries. Catalysis Science & Technology, 2019,9(5):1245-1254. |
[21] |
JITTIARPORN P, BADILESCU S, Al SAWAFTA M N, et al. Electrochromic properties of Sol-Gel prepared hybrid transition metal oxides - a short review. Journal of Science: Advanced Materials and Devices, 2017,2(3):286-300.
DOI URL |
[22] |
MOHAMED M A, SALLEH W N W, JAAFAR J, et al. Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: bio-template assisted Sol-Gel synthesis and photocatalytic activity. Applied Surface Science, 2017,393:46-59.
DOI URL |
[23] | WANG X Y, WANG X Y, HUANG W G, et al. Sol-Gel template synthesis of highly ordered MnO2 nanowire arrays. Journal of Power Sources, 2005,140(1):211-215. |
[24] | 赵娜英, 卞洁鹏, 杨雪健, 等. 溶胶-凝胶法制备掺镧改性纳米MnO2. 化工新型材料, 2019,47(5):164-171. |
[25] | 李哲, 汤化伟, 王百年. 纳米MnO2负载硅藻土对苯酚废水的吸附性能研究. 合肥工业大学学报(自然科学版), 2016,39(5):695-700. |
[26] | THEISS F L, AYOKO G A, FROST R L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-a review. Applied Surface Science, 2016,383:200-213. |
[27] | LI X L, ZHU J F, JIAO Y H, et al. Manganese dioxide morphology on electrochemical performance of Ti3C2Tx@MnO2 composites. Journal of Inorganic Materials, 2020,35(1):119-125. |
[28] | MAHAMALLIK P, SAHA S, PAL A. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly. Chemical Engineering Journal, 2015,276:155-165. |
[29] | 吴昊天, 张振忠, 赵芳霞, 等. 低温固相法制备的纳米α-MnO2的性能. 电池, 2015,45(3):157-159. |
[30] | 龚良玉. 固相合成MnO2纳米棒的电容性能及其PbO改性研究. 青岛农业大学学报(自然科学版), 2011,28(2):157-161. |
[31] | 李娟, 夏熙. 纳米MnO2的固相合成及其电化学性能的研究(Ι): 纳米γ-MnO2的合成及表征. 高等学校化学学报, 1999,20(9):1434-1437. |
[32] | SHIN J, SEO J K, YAYLIAN R, et al. A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems. International Materials Reviews, 2019: 1-32. |
[33] | SHAFI P M, BOSE A C. Structural evolution of tetragonal MnO2 and its electrochemical behavior. AIP Conference Proceedings, 2016,1731(1):050038. |
[34] | HAN S D, KIM S, LI D G, et al. Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chemistry of Materials, 2017,29(11):4874-4884. |
[35] |
ZERAATI A S, ARJMAND M, SUNDARARAJ U. Silver nanowire/MnO2 nanowire hybrid polymer nanocomposites: materials with high dielectric permittivity and low dielectric loss. ACS Applied Materials & Interfaces, 2017,9(16):14328-14336.
DOI URL PMID |
[36] | REHMAN S, TANG T Y, ALI Z, et al. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small, 2017,13(20):1700087. |
[37] | LUO P F, HUANG Z. Fabrication of scandium-doped lithium manganese oxide as a high-rate capability cathode material for lithium energy storage. Solid State Ionics, 2019,338:20-24. |
[38] | WANG Y M, WANG F, FENG X J. Porous nest-like LiMnPO4 microstructures assembled by nanosheets for lithium ion battery cathodes. Journal of Materials Science: Materials in Electronics, 2018,29(2):1426-1434. |
[39] | 李俊豪, 冯斯桐, 张圣洁, 等. 高性能磷酸锰锂正极材料的研究进展. 材料导报, 2019,33(9):2854-2861. |
[40] | ZHAO J X, WANG G H, ZHANG Q, et al. An underlying intercalation ion for fast-switching and stable electrochromism. Journal of Materials Science Materials in Electronics, 2019,30(13):12753-12756. |
[41] | LIU Y R, RYOTA S, CHEUK L H, et al. Electrochromic triphenylamine-based cobalt (II) complex nanosheets. Journal of Materials Chemistry C, 2019,7(30):9159-9166. |
[42] | CHEN C W, BRIGEMAN A N, HO T J, et al. Normally transparent smart window based on electrically induced instability in dielectrically negative cholesteric liquid crystal. Optical Materials Express, 2018,8(3):691. |
[43] |
TONG Z Q, LIU S K, LI X G, et al. Achieving rapid Li-ion insertion kinetics in TiO2 mesoporous nanotube arrays for bifunctional high-rate energy storage smart windows. Nanoscale, 2018,10:3254-3261.
DOI URL PMID |
[44] | CANNAVALE A, AYR U, FIORITO F, et al. Smart electrochromic windows to enhance building energy efficiency and visual comfort. Energies, 2020,13(6):1449. |
[45] | BECHINGER C, FERRERE S, ZABAN A, et al. Photoelectrochromic windows and displays. Nature, 1996,383(6601):608-610. |
[46] | CHO S I, KWON W J, CHOI S J, et al. Nanotube-based ultrafast electrochromic display. Advanced Materials, 2005,17(2):171-175. |
[47] | ZHOU D, CHE B Y, LU X H. Rapid one-pot electrodeposition of polyaniline/manganese dioxide hybrids: a facile approach to stable high-performance anodic electrochromic materials. Journal of Materials Chemistry C, 2017(5):1758-1766. |
[48] | SAKAI N, EBINA Y, TAKADA K, et al. Electrochromic films composed of MnO2 nanosheets with controlled optical density and high coloration efficiency. Journal of the Electrochemical Society, 2005,152(12):E384-E389. |
[49] | FALAHATGAR S S, GHODSI F E, TEPEHAN F Z, et al. Electrochromic performance of Sol-Gel derived amorphous MnO2-ZnO nanogranular composite thin films. Journal of Non-Crystalline Solids, 2015,427:1-9. |
[50] | LYU W M, YANG L, FAN B B, et al. Silylated MgAl LDHs intercalated with MnO2 nanowires: highly efficient catalysts for the solvent-free aerobic oxidation of ethylbenzene. Chemical Engineering Journal, 2015,263:309-316. |
[51] |
WANG F, DAI H X, DENG J G, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environmental Science & Technology, 2012,46(7):4034-4041.
DOI URL PMID |
[52] |
QI L, YAN Z, HUO Y, et al. MnO2 nanosheet-assisted ligand-DNA interaction-based fluorescence polarization biosensor for the detection of Ag+ ions. Biosensors and Bioelectronics, 2017,87:566-571.
DOI URL PMID |
[53] |
XIAO F, LI Y Q, GAO H C, et al. Growth of coral-like PtAu-MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. Biosensors & Bioelectronics, 2013,41:417-423.
DOI URL PMID |
[1] | YUE Quanxin, GUO Ruihua, WANG Ruifen, AN Shengli, ZHANG Guofang, GUAN Lili. 3D Core-shell Structured NiMoO4@CoFe-LDH Nanorods: Performance of Efficient Oxygen Evolution Reaction and Overall Water Splitting [J]. Journal of Inorganic Materials, 2024, 39(11): 1254-1264. |
[2] | XU Zhou, LIU Yuxuan, CHI Junlin, ZHANG Tingting, WANG Shuyue, LI Wei, MA Chunhui, LUO Sha, LIU Shouxin. Horseshoe-shaped Hollow Porous Carbon: Synthesis by Hydrothermal Carbonization with Dual-template and Electrochemical Property [J]. Journal of Inorganic Materials, 2023, 38(8): 954-962. |
[3] | LI Yuejun, CAO Tieping, SUN Dawei. Bi4O5Br2/CeO2 Composite with S-scheme Heterojunction: Construction and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 963-970. |
[4] | NIU Haibin, HUANG Jiahui, LI Qianwen, MA Dongyun, WANG Jinmin. Directly Hydrothermal Growth and Electrochromic Properties of Porous NiMoO4 Nanosheet Films [J]. Journal of Inorganic Materials, 2023, 38(12): 1427-1433. |
[5] | YAO Yishuai, GUO Ruihua, AN Shengli, ZHANG Jieyu, CHOU Kuochih, ZHANG Guofang, HUANG Yarong, PAN Gaofei. In-situ Loaded Pt-Co High Index Facets Catalysts: Preparation and Electrocatalytic Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 71-78. |
[6] | ZHANG Jiaqiang, ZOU Xinlei, WANG Nengze, JIA Chunyang. Zn-Fe PBA Films by Two-step Electrodeposition Method: Preparation and Performance in Electrochromic Devices [J]. Journal of Inorganic Materials, 2022, 37(9): 961-968. |
[7] | ZHANG Xiaoyu, LIU Yongsheng, LI Ran, LI Yaogang, ZHANG Qinghong, HOU Chengyi, LI Kerui, WANG Hongzhi. Cu3(HHTP)2 Film-based Ionic-liquid Electrochromic Electrode [J]. Journal of Inorganic Materials, 2022, 37(8): 883-890. |
[8] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[9] | WANG Jinmin, HOU Lijun, MA Dongyun. Molybdenum Oxide Electrochromic Materials and Devices [J]. Journal of Inorganic Materials, 2021, 36(5): 461-470. |
[10] | WU Qi, CONG Shan, ZHAO Zhigang. Infrared Electrochromic Property of the Colorful Tungsten Oxide Films [J]. Journal of Inorganic Materials, 2021, 36(5): 485-491. |
[11] | FAN Hongwei, LI Kerui, HOU Chengyi, ZHANG Qinghong, LI Yaogang, WANG Hongzhi. Multi-functional Electrochromic Devices: Integration Strategies Based on Multiple and Single Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 115-127. |
[12] | WANG Tingting, SHI Shumei, LIU Chenyuan, ZHU Wancheng, ZHANG Heng. Synthesis of Hierarchical Porous Nickel Phyllosilicate Microspheres as Efficient Adsorbents for Removal of Basic Fuchsin [J]. Journal of Inorganic Materials, 2021, 36(12): 1330-1336. |
[13] | SONG Keke, HUANG Hao, LU Mengjie, YANG Anchun, WENG Jie, DUAN Ke. Hydrothermal Preparation and Characterization of Zn, Si, Mg, Fe Doped Hydroxyapatite [J]. Journal of Inorganic Materials, 2021, 36(10): 1091-1096. |
[14] | XIAO Yumin, Li Bin, QIN Lizhao, LIN Hua, LI Qing, LIAO Bin. Efficient Preparation of CuGeO3 with Controllable Morphology Using CuCl2 as Copper Source [J]. Journal of Inorganic Materials, 2021, 36(1): 69-74. |
[15] | WANG Juhan,WEN Xiong,LIU Chengchao,ZHANG Yuhua,ZHAO Yanxi,LI Jinlin. Preparation and Fischer-Tropsch Synthesis Performance of Hierarchical Co/Al-SiO2 Catalyst [J]. Journal of Inorganic Materials, 2020, 35(9): 999-1004. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||