[1] |
NITTA N, WU F, LEE J T, et al. Li-ion battery materials: present and future. Materials Today, 2015,18(5):252-264.
|
[2] |
Battery Calendar Life Estimator Manual Modeling and Simulation, INL/EXT- 08015136,2012.
|
[3] |
XU K. Electrolytes and interfaces in Li-ion batteries and beyond. Chemical Reviews, 2014,114(23):11503-11618.
|
[4] |
BRYNGELSSON H, STJERNDAHL M, GUSTAFSSON T, et al. How dynamic is the SEI? Journal of Power Sources, 2007,174(2):970-975.
|
[5] |
LIU R R, DENG X, LIU X R, et al. Facet dependent SEI formation on LiNi0.5Mn1.5O4 cathode identified by in-situ single particle atomic force microscopy. Chemical Communications, 2014,50(99):15756-15759.
|
[6] |
EDSTR M K, GUSTAFSSON T, THOMAS J O. The cathode- electrolyte interface in the Li-ion battery. Electrochimica Acta, 2004,50(2/3):397-403.
|
[7] |
PALAC N M R, DE G A. Why do batteries fail? Science, 2016,351(6273):1253292.
|
[8] |
EDDAHECH A, BRIAT O, VINASSA J M. Performance comparison of four lithium-ion battery technologies under calendar aging. Energy, 2015,84:542-550.
|
[9] |
HAN X, LU L, ZHENG Y, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation, 2019,1:100005.
|
[10] |
WATANABE S, KINOSHITA M, NAKURA K. Capacity fade of LiAylNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life test. I. Comparison analysis between LiAylNi1-x-yCoxO2 and LiCoO2 cathodes in cylindrical lithium-ion cell. Journal of Power Sources, 2014,247(2):412-422.
|
[11] |
KASSEM M, BERNARD J, REVEL R, et al. Calendar aging of a graphite/LiFePO4 cell. Journal of Power Sources, 2012,208(2):296-305.
|
[12] |
GROLLEAU S, DELAILLE A, GUALOUS H, et al. Calendar aging of commercial graphite/LiFePO4 cell-predicting capacity fade under time dependent storage conditions. Journal of Power Sources, 2014,255(6):450-458.
|
[13] |
THOMAS E V, BLOOM I, CHRISTOPHERSEN J P, et al. Rate-based degradation modeling of lithium-ion cells. Journal of Power Sources, 2012,206(206):378-382.
|
[14] |
LEKGOATHI M D S, VILAKAZI B M, WAGENER J B, et al. Decomposition kinetics of anhydrous and moisture exposed LiPF6 salts by thermogravimetry. Journal of Fluorine Chemistry, 2013,149(2):53-56.
|
[15] |
KAWAMURA T, OKADA S, YAMAKI J I. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. Journal of Power Sources, 2006,156(2):547-554.
|
[16] |
PINSON M B, BAZANT M Z. Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction. Journal of the Electrochemical Society, 2012,160(2):A243-A250.
|
[17] |
CHUNG K Y, YOON W S, KIM K B, et al. Formation of an SEI on a LiMn2O4 cathode during room temperature charge-discharge cycling studied by soft X-ray absorption spectroscopy at the fluorine k-edge. Journal of Applied Electrochemistry, 2011,41(11):1295-1299.
|
[18] |
ABRAHAM D P, TWESTEN R D, BALASUBRAMANIAN M, et al. Microscopy and spectroscopy of lithium nickel oxide-based particles used in high power lithium-ion cells. Journal of the Electrochemical Society, 2003,150(150):A1450-A1456.
|
[19] |
ABRAHAM D P, TWESTEN R D, BALASUBRAMANIAN M, et al. Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells. Electrochemistry Communications, 2002,4(8):620-625.
|
[20] |
NIE M, CHALASANI D, ABRAHAM D P, et al. Lithium ion battery graphite solid electrolyte interface revealed by microscopy and spectroscopy. Journal of Physical Chemistry C, 2013,117(3):1257-1267.
|
[21] |
PELED E, MENKIN S. Review—SEI: past, present and future. Journal of the Electrochemical Society, 2017,164(7):A1703-A1719.
|
[22] |
GAUTHIER M, CARNEY T J, GRIMAUD A, et al. Electrode- electrolyte interface in Li-ion batteries: current understanding and new insights. The Journal of Physical Chemistry Letters, 2015,6(22):4653-4672.
|
[23] |
VERMA P, MAIRE P, NOV K P. A review of the features and analyses of the solid electrolyte interface in Li-ion batteries. Electrochimica Acta, 2010,55(22):6332-6341.
|
[24] |
NANDA J, YANG G, HOU T, et al. Unraveling the nanoscale heterogeneity of solid electrolyte interface using tip-enhanced Raman spectroscopy. Joule, 2019,3(8):2001-2019.
|
[25] |
AGUBRA V A, FERGUS J W. The formation and stability of the solid electrolyte interface on the graphite anode. Journal of Power Sources, 2014,268(268):153-162.
|
[26] |
HEISKANEN S K, KIM J, LUCHT B L. Generation and evolution of the solid electrolyte interface of lithium-ion batteries. Joule, 2019,3(10):2322-2333.
|