Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (2): 168-174.DOI: 10.15541/jim20190650
Special Issue: 能源材料论文精选(2021); 【虚拟专辑】钙钛矿材料(2020~2021); 【虚拟专辑】太阳能电池(2020~2021)
• RESEARCH PAPER • Previous Articles Next Articles
WANG Yanxiang(), GAO Peiyang, FAN Xueyun, LI Jiake, GUO Pingchun, HUANG Liqun, SUN Jian
Received:
2019-12-25
Revised:
2020-06-17
Published:
2021-02-20
Online:
2020-07-10
About author:
WANG Yanxiang(1972-), female, professor. E-mail: yxwang72@163.com
Supported by:
CLC Number:
WANG Yanxiang, GAO Peiyang, FAN Xueyun, LI Jiake, GUO Pingchun, HUANG Liqun, SUN Jian. Effect of SnO2 Annealing Temperature on the Performance of Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2021, 36(2): 168-174.
Fig. 1 FSEM images of FTO and SnO2 films annealed at different temperatures (a, j) Bare FTO; (b) 60 ℃; (c) 90 ℃; (d) 120 ℃; (e) 150 ℃; (f, i) 180 ℃; (g) 210 ℃; (h) 240 ℃
Fig. 8 AFM images of SnO2 films prepared at different annealing temperatures (20 μm×20 μm) (a) 60 ℃; (b) 90 ℃; (c) 120 ℃; (d) 150 ℃; (e) 180 ℃; (f) 210 ℃; (g) 240 ℃
Temperature/℃ | 60 | 90 | 120 | 150 | 180 | 210 | 240 |
---|---|---|---|---|---|---|---|
Band gap/eV | 3.88 | 3.87 | 3.88 | 3.91 | 3.90 | 3.88 | 3.88 |
Table 1 Bandgap of SnO2 films annealed at different temperatures
Temperature/℃ | 60 | 90 | 120 | 150 | 180 | 210 | 240 |
---|---|---|---|---|---|---|---|
Band gap/eV | 3.88 | 3.87 | 3.88 | 3.91 | 3.90 | 3.88 | 3.88 |
Temperature/℃ | VOC/V | JSC/(mA∙cm-2) | FF/% | PCE/% |
---|---|---|---|---|
60 | 0.87 | 18.85 | 40.75 | 6.72 |
90 | 0.90 | 19.15 | 55.70 | 9.60 |
120 | 0.97 | 19.56 | 71.67 | 13.60 |
150 | 1.06 | 19.65 | 74.36 | 15.48 |
180 | 1.09 | 20.91 | 75.91 | 17.28 |
210 | 1.06 | 19.27 | 73.32 | 14.91 |
240 | 0.99 | 19.23 | 70.75 | 13.43 |
Table 1 Photoelectric parameters of PSCs with SnO2 ETLs annealed at different temperatures
Temperature/℃ | VOC/V | JSC/(mA∙cm-2) | FF/% | PCE/% |
---|---|---|---|---|
60 | 0.87 | 18.85 | 40.75 | 6.72 |
90 | 0.90 | 19.15 | 55.70 | 9.60 |
120 | 0.97 | 19.56 | 71.67 | 13.60 |
150 | 1.06 | 19.65 | 74.36 | 15.48 |
180 | 1.09 | 20.91 | 75.91 | 17.28 |
210 | 1.06 | 19.27 | 73.32 | 14.91 |
240 | 0.99 | 19.23 | 70.75 | 13.43 |
Fig. 5 (a) J-V curves, (b) PCE histograms, (c) IPCE spectra of PSCs prepared with SnO2 ETLs annealed at different temperatures; (d) IPCE and integral current curves of PSC with SnO2 ETL annealed at 180 ℃ (Colourful curves are available on web)
Temperature/℃ | Resistivity/ (×10-4, Ω∙cm) | Carrier mobility/ (cm2∙V-1·s-1) |
---|---|---|
60 | 1.40 | 23.11 |
90 | 1.74 | 25.60 |
120 | 1.80 | 33.98 |
150 | 1.24 | 45.26 |
180 | 1.46 | 57.89 |
210 | 1.64 | 39.81 |
240 | 1.38 | 26.21 |
Table 2 Electrical properties of SnO2 films annealed at different temperatures with FTO as substrate
Temperature/℃ | Resistivity/ (×10-4, Ω∙cm) | Carrier mobility/ (cm2∙V-1·s-1) |
---|---|---|
60 | 1.40 | 23.11 |
90 | 1.74 | 25.60 |
120 | 1.80 | 33.98 |
150 | 1.24 | 45.26 |
180 | 1.46 | 57.89 |
210 | 1.64 | 39.81 |
240 | 1.38 | 26.21 |
[1] | KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009,131:6050-6051. |
[2] | https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf (2019). |
[3] |
DONG Q, FANG Y J, SHAO Y C, et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015,347(6225):967-970.
URL PMID |
[4] | LANG F, SHARGAIEVA O, BRUS V V, et al. Influence of radiation on the properties and the stability of hybrid perovskites. Adv. Mater., 2018,30(3):172905. |
[5] | YANG Z, ZHONG M, LIANG Y, et al. SnO2-C60 pyrrolidine tris-acid (CPTA) as the electrontransport layer for highly efficient and stable planar Sn-based perovskite solar cells. Adv. Funct. Mater., 2019,29(42):1903621. |
[6] | JIANG Q, ZHANG L, WANG H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy, 2017,2:16177. |
[7] | XIONG L B, QIN M C, YANG G, et al. Performance enhancement of high temperature SnO2-based planar perovskite solar cells: electrical characterization and understanding of the mechanism. J. Mater. Chem., 2016,A4(21):8374-8383. |
[8] | JIANG Q, CHU Z M, WANG P Y, et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater., 2017,29(46):1703852. |
[9] | KIM H, SANG H I, PARK N G. Organolead halide perovskite: new horizons in solar cell research. J. Phys. Chem. C, 2014,118(11):5615-5625. |
[10] |
YANG D, YANG R X, WANG K, et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun., 2018,9:3239.
DOI URL PMID |
[11] | ZHANG P, WU J, ZHANG T, et al. Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater., 2018,30(3):1703737. |
[12] |
GRÄTZEL M. The light and shade of perovskite solar cells. Nat. Mater., 2014,13(9):838-842.
DOI URL PMID |
[13] | CHUEH C C, LI C Z, JEN A K Y. Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci., 2015,8(4):1160-1189. |
[14] | CHEN Y C, MENG Q, ZHANG L R, et al. SnO2-based electron transporting layer materials for perovskite solar cells: a review of recent progress. Journal of Energy Chemistry, 2019,35:144-167. |
[15] | HU T, BECKER T, POURDAVOUD N, et al. Indium-free perovskite solar cells enabled by impermeable tin-oxide electron extraction layers. Adv. Mater., 2017,29(27):1606656. |
[16] | CHEN H, LIU D, WANG Y, et al. Enhanced performance of planar perovskite solar cells using low-temperature solution-processed Al-doped SnO2 as electron transport layers. Nanoscale Res. Lett., 2017,12(238):1-6. |
[17] | KE W J, FANG G J, LIU Q, et al. Low-temperature solution- processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc., 2015,137(21):6730-6733. |
[18] | WANG C L, XIAO C X, YU, Y,et al. Understanding and eliminating hysteresis for highly efficient planar perovskite solar cells. Adv. Energy Mater., 2017,7(17):1700414. |
[19] | JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics, 2019,13:460-466. |
[20] | SAIDAMINOV M I, KIM J, JAIN A, et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy, 2018,3(8):648-654. |
[21] | 柯维俊. 基于高效电子传输层的钙钛矿太阳能电池研究. 武汉: 武汉大学博士学位论文, 2016. |
[22] | LIU Q, ZHANG X, LI C Y, et al. Effect of tantalum doping on SnO2 electron transport layer via low temperature process for perovskite solar cells. Appl. Phys. Lett., 2019,115:143903. |
[23] | RAHUL R J, ASIT P, ARJUN S, et al. Effect of tantalum doping in a TiO2 compact layer on the performance of planar spiro-OMeTAD free perovskite solar cells. J. Mater. Chem. A, 2018,6:1037-1047. |
[24] |
TEBBY Z, UDDIN T, NICOLAS Y, et al. Low-temperature UV processing of nanoporous SnO2 layers for dye-sensitized solar cells. ACS Appl. Mater. Interfaces, 2011,3(5):1485-1491.
DOI URL PMID |
[25] |
TRAN V H, AMBADE R B, AMBADE S B, et al. Low-temperature solution-processed SnO2 nanoparticles as cathode buffer layer for inverted organic solar cells. ACS Appl. Mater. Interfaces, 2017,9(2):1645-1653.
DOI URL PMID |
[26] |
REN X, YANG D, YANG Z, et al. Solution-processed Nb:SnO2 electron transport layer for efficient planar perovskite solar cells. ACS Appl. Mater. Interfaces, 2017,9(3):2421-2429.
DOI URL PMID |
[27] | JEON N J, NA H, JUNG E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy, 2018,3:682-689. |
[28] | LEE Y, PAEK S, CHO K T, et al. Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. J. Mater. Chem. A, 2017,5:12729-12734. |
[29] | LEE Y, LEE S, SEO G, et al. Efficient planar perovskite solar cells using passivated tin oxide as an electron transport layer. Adv. Sci., 2018,5(6):1800130. |
[30] |
XING G, MATHEWS N, SUN S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013,342(6156):344-347.
DOI URL PMID |
[31] | YANG D, YANG R, ZHANG J, et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci., 2015,8:3208-3214. |
[32] | YANG S, YUE W, ZHU J, et al. Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater., 2013,23(28):3570-3576. |
[33] | MAHMUD M A, ELUMALAI N K, UPAMA M B, et al. Single vs mixed organic cation for low temperature processed perovskite solar cells. Electrochim. Acta., 2016,222(20):1510-1521. |
[34] | WANG W, ZHANG Z, CAI Y, et al. Enhanced performance of CH3NH3PbI3-xClx perovskite solar cells by CH3NH3 modification of TiO2-perovskite layer interface. Nanoscale Res. Lett., 2016,11:316. |
[35] | YU Z, CHEN B, LIU P, et al. Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering. Adv. Funct. Mater., 2016,26(27):4866-4873. |
[36] |
BAG M, RENNA L A, ADHIKARI R Y, et al. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc., 2015,137(40):13130-13137.
URL PMID |
[37] | AZPIROZ J M, MOSCONI E, BISQUERT J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci., 2015,7:2118-2127. |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[6] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[7] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[8] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[9] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[10] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[11] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[12] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[13] | MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395. |
[14] | WANG Ye, JIAO Yinan, GUO Junxia, LIU Huan, LI Rui, SHANG Zixuan, ZHANG Shidong, WANG Yonghao, GENG Haichuan, HOU Denglu, ZHAO Jinjin. Optimization of Interfacial Engineering of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(11): 1323-1330. |
[15] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||