Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (8): 847-856.DOI: 10.15541/jim20190554
Special Issue: 功能材料论文精选(二):发光材料(2020); 【虚拟专辑】LED发光材料
JI Haipeng1(),ZHANG Zongtao1,XU Jian2,TANABE Setsuhisa2,CHEN Deliang1(),XIE Rongjun3()
Received:
2019-10-31
Revised:
2019-11-20
Published:
2020-08-20
Online:
2020-03-06
Supported by:
CLC Number:
JI Haipeng, ZHANG Zongtao, XU Jian, TANABE Setsuhisa, CHEN Deliang, XIE Rongjun. Advance in Red-emitting Mn4+-activated Oxyfluoride Phosphors[J]. Journal of Inorganic Materials, 2020, 35(8): 847-856.
Fig. 1 Energy levels arising from a d3 configuration for a free transition metal ion (C=4.5B) (a), Tanabe-Sugano diagram for the d3 electron configuration in an octahedral crystal field (C=4.5B) (b), orientation of the five d-orbitals with respect to the ligands of an octahedral complex (black dots showing the ligands around the transition metal ion) (c), and crystal field splitting for the d-orbitals in an octahedral crystal field (d)[16]
Fig. 2 Regular octahedron coordination and distorted octahedra coordination (a) Point symmetry of Oh; (b) Central cation shifting to a vertex, C4v; (c) Central cation shifting to an edge, C2v; (d) Central cation shifting to a face, C3v
Cation | Phosphor host | Peaking wavelength/nm | (R-line/ν6 intensity ratio)/% | T50%/K | Ref. |
---|---|---|---|---|---|
d0 | Na2WO2F4 | 619 | 125 | 340 | [21-22] |
Cs2WO2F4 | 632 | 5 | 350 | [23] | |
Cs2NbOF5 | 632 | 10 | - | [24-25] | |
BaNbOF5 | 629 | 10 | - | [26] | |
Sr2ScO3F | 690 | - | 320 | [27] | |
BaTiOF4 | 632 | 5 | - | [28] | |
d10 | Mg28Ge7.55O32F15.04 | 657 | - | 700 | [29] |
s0 | LiAl4O6F | 662 | 5-10 | - | [30] |
Table 1 The reported Mn4+ activated oxyfluoride phosphors
Cation | Phosphor host | Peaking wavelength/nm | (R-line/ν6 intensity ratio)/% | T50%/K | Ref. |
---|---|---|---|---|---|
d0 | Na2WO2F4 | 619 | 125 | 340 | [21-22] |
Cs2WO2F4 | 632 | 5 | 350 | [23] | |
Cs2NbOF5 | 632 | 10 | - | [24-25] | |
BaNbOF5 | 629 | 10 | - | [26] | |
Sr2ScO3F | 690 | - | 320 | [27] | |
BaTiOF4 | 632 | 5 | - | [28] | |
d10 | Mg28Ge7.55O32F15.04 | 657 | - | 700 | [29] |
s0 | LiAl4O6F | 662 | 5-10 | - | [30] |
Fig. 3 Unit cell of Na2WO2F4 (a), highly-distorted [WO2F4] octahedra (b), and emission spectrum of Na2WO2F4:Mn4+ (c) [21] with inset showing phosphor image under 460 nm light Na: yellow; W: blue; O: red; F: gray
Fig. 4 (a) Unit cell of Cs2WO2F4 which contains slightly- distorted [W(O,F)6] octahedra, with the bottom-right showing the local coordination of Mn4+ in K2MnF6; (b) Excitation and emission spectra of Cs2WO2F4:Mn4+ with inset showing the phosphor image under 365 nm light[23]
Fig. 5 PLE and DRS spectra of the Cs2NbOF5:Mn4+ phosphor (a) and temperature-dependent emission spectra of Cs2NbOF5:Mn4+ (b)[24] with the inset showing the intensity evolution of the integrated emission (Ie), the stokes emission (Is) and the anti-stokes emmission (Ia)
Fig. 6 The PLE (a) and PL (b) spectra of the BaNbOF5:Mn4+ phosphor at temperature of 78 and 298 K with insets showing the phosphor images under natural or UV light[26]
Fig. 8 Excitation and emission spectra of BaTiOF4:Mn4+ at room temperature (a), emission spectra of BaTiOF4:Mn4+ at 77 K and 293 K (b), unit cell of BaTiOF4 (c), and distorted octahedron coordination of [Ti2OF4] (d)[28]Ba: yellow; Ti: blue; O: red; F: gray
Fig. 9 Comparison of the calculated Mn4+ energy levels in Mg28Ge7.55O32F15.04 for all possible Mn4+ positions in Ge/Mg sites with the measured spectrum[29]
[1] |
WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chemical Reviews, 2018,1184:1951-2009.
DOI URL PMID |
[2] |
XIA Z, LIU Q. Progress in discovery and structural design of color conversion phosphors for LEDs. Progress in Materials Science, 2016,84:59-117.
DOI URL |
[3] |
LIN C C, MEIJERINK A, LIU R S. Critical red components for next-generation white LEDs. Journal of Physical Chemistry Letters, 2016,73:495-503.
DOI URL PMID |
[4] |
HU Y, ZHUANG W, YE H, et al. Preparation and luminescent properties of (Ca1-xSrx)S:Eu 2+ red-emitting phosphor for white LED . Journal of Luminescence, 2005,1113:139-145.
DOI URL |
[5] |
XIE R J, HINTZEN H T. Optical properties of (oxy)nitride materials: a review. Journal of the American Ceramic Society, 2013,963:665-687.
DOI URL |
[6] |
PUST P, WEILER V, HECHT C, et al. Narrow-band red-emitting Sr[LiAl3N4]:Eu 2+ as a next-generation LED-phosphor material . Nature Materials, 2014,139:891-896.
DOI URL |
[7] |
SCHMIECHEN S, SCHNEIDER H, WAGATHA P, et al. Toward new phosphors for application in illumination-grade white pc-LEDs: the nitridomagnesosilicates Ca[Mg3SiN4]:Ce 3+, Sr[Mg3SiN4]:Eu 2+, and Eu[Mg3SiN4] . Chemistry of Materials, 2014,268:2712-2719.
DOI URL |
[8] |
ADACHI S. Photoluminescence spectra and modeling analyses of Mn 4+-activated fluoride phosphors: a review . Journal of Luminescence, 2018,197:119-130.
DOI URL |
[9] | ADACHI S. Mn4+-activated red and deep red-emitting phosphors. ECS Journal of Solid State Science and Technology, 2020, 9(1): 016001-1-34. |
[10] |
SIJBOM H F, VERSTRAETE R, JOOS J J, et al. K2SiF6:Mn 4+ as a red phosphor for displays and warm-white LEDs: a review of properties and perspectives . Optical Materials Express, 2017,79:3332-3365.
DOI URL |
[11] |
PAULUSZ A G. Efficient Mn(IV) emission in fluorine coordination. Journal of the Electrochemical Society, 1973,1207:942-947.
DOI URL |
[12] | LIU Y H, GAO W, CHEN G T, et al. Research progress and development trend of fluoride phosphor for white LED. China Light & Lighting, 2018(2):20-24. |
[13] |
VERSTRAETE R, SIJBOM H F, KORTHOUT K, et al. K2MnF6 as a precursor for saturated red fluoride phosphors: the struggle for structural stability. Journal of Materials Chemistry C, 2017,541:10761-10769.
DOI URL |
[14] | ZHOU Z, ZHOU N, XIA M, et al. Research progress and application prospects of transition metal Mn 4+-activated luminescent materials . Journal of Materials Chemitry C, 2016,439:9143-9161. |
[15] | ZHOU Y Y, WANG L Y, DENG T T, et al. Recent advances in Mn 4+-doped fluoride narrow-band red-emitting phosphors . Scientia Sinica Technologica, 2017,4711:1111-1125. |
[16] | TIM S. New Narrow Band Red Phosphors for White Light Emitting Diodes. Utrecht: Doctoral Dissertation of Utrecht University, 2018. |
[17] |
TANABE Y, SUGANO S. On the absorption spectra of complex ions II. Journal of the Physical Society of Japan, 1954,9:766-779.
DOI URL |
[18] |
BRIK M G, CAMARDELLO S J, SRIVASTAVA A M. Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect. ECS Journal of Solid State Science and Technology, 2016,51:R3067-R3077.
DOI URL |
[19] |
BRIK M G, BEERS W W, COHEN W, et al. On the Mn 4+ R-line emission intensity and its tunability in solids . Optical Materials, 2019,91:338-343.
DOI URL |
[20] |
JI H, UEDA J, BRIK M G, et al. Intense deep-red zero phonon line emission of Mn 4+ in double perovskite La4Ti3O12 . Physical Chemistry Chemical Physics, 2019,2145:25108-25117.
DOI URL PMID |
[21] |
HU T, LIN H, CHENG Y, et al. A highly-distorted octahedron with a C2v group symmetry inducing an ultra-intense zero phonon line in Mn 4+-activated oxyfluoride Na2WO2F4 . Journal of Materials Chemistry C, 2017,540:10524-10532.
DOI URL |
[22] |
CAI P, WANG X, SEO H J. Excitation power dependent optical temperature behaviors in Mn 4+ doped oxyfluoride Na2WO2F4 . Physical Chemistry Chemical Physics, 2018,203:2028-2035.
DOI URL PMID |
[23] | CAI P, QIN L, CHEN C, et al. Luminescence, energy transfer and optical thermometry of a novel narrow red emitting phosphor: Cs2WO2F4:Mn 4+ . Dalton Transcations, 2017,4641:14331-14340. |
[24] |
WANG Q, YANG Z, WANG H, et al. Novel Mn 4+-activated oxyfluoride Cs2NbOF5:Mn 4+ red phosphor for warm white light- emitting diodes . Optical Materials, 2018,85:96-99.
DOI URL |
[25] | MING H, ZHANG J, LIU L, et al. A novel Cs2NbOF5:Mn 4+ oxyfluoride red phosphor for light-emitting diode devices . Dalton Transcations, 2018,4745:16048-16056. |
[26] |
DONG X, PAN Y, LI D, et al. A novel red phosphor of Mn 4+ ion-doped oxyfluoroniobate BaNbOF5 for warm WLED applications . CrystEngComm, 2018,2037:5641-5646.
DOI URL |
[27] |
KATO H, TAKATA Y, KOBAYASHI M, et al. Photoluminescence properties of layered perovskite-type strontium scandium oxyfluoride activated with Mn 4+ . Frontiers in Chemistry, 2018,6:467.
DOI URL PMID |
[28] |
LIANG Z, YANG Z, TANG H, et al. Synthesis, luminescence properties of a novel oxyfluoride red phosphor BaTiOF4:Mn 4+ for LED backlighting . Optical Materials, 2019,90:89-94.
DOI URL |
[29] |
BRIK M G, SRIVASTAVA A M. A computation study of site occupancy in the commercial Mg28Ge7.55O32F15.04:Mn 4+ phosphor . Optical Materials, 2016,54:245-251.
DOI URL |
[30] |
WANG Q, LIAO J, KONG L, et al. Luminescence properties of a non-rare-earth doped oxyfluoride LiAl4O6F:Mn 4+ red phosphor for solid-state lighting . Journal of Alloys and Compounds, 2019,772:499-506.
DOI URL |
[31] |
SRIVASTAVA A M, ACKERMAN J F. Synthesis and luminescence properties of Cs2NbOF5 and Cs2NbOCl5 with isolated [NbOX5] -2 (X=F -, Cl -) octahedra . Materials Research Bulletin, 1991,266:443-448.
DOI URL |
[32] | SRIVASTAVA A M, ACKERMAN J F. Synthesis and luminescence properties of barium niobium oxide fluoride (BaNbOF5) with isolated [NbOF5] 2- octahedra . Chemitry of Materials, 1992,45:1011-1013. |
[33] |
BLESS P W, VON DREELE R B, KOSTINER E, et al. Anion and cation defect structure in magnesium fluorogermanate. Journal of Solid State Chemistry, 1972,42:262-268.
DOI URL |
[34] |
BEERS W W, SMITH D, COHEN W E, et al. Temperature dependence (13-600 K) of Mn 4+ lifetime in commercial Mg28Ge7.55O32F15.04 and K2SiF6 phosphors . Optical Materials, 2018,84:614-617.
DOI URL |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
[5] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[6] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[7] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[8] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[9] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[10] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[11] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[12] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[13] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[14] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[15] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||