Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (8): 923-930.DOI: 10.15541/jim20190530
• RESEARCH PAPER • Previous Articles Next Articles
ZHANG Dongshuo1,2(),CAI Hao1,GAO Kaiyin1,MA Zichuan1,2()
Received:
2019-10-16
Revised:
2019-12-27
Published:
2020-08-20
Online:
2020-03-03
Supported by:
CLC Number:
ZHANG Dongshuo,CAI Hao,GAO Kaiyin,MA Zichuan. Preparation and Visible-light Photocatalytic Degradation on Metronidazole of Zn2SiO4-ZnO-biochar Composites[J]. Journal of Inorganic Materials, 2020, 35(8): 923-930.
Catalyst | Specific surface area/(m2?g-1) | Pore volume/ (cm3?g-1) | Pore size/nm |
---|---|---|---|
SOB-3-4 | 31.29 | 0.32 | 20.40 |
ZnO | 24.39 | 0.24 | 19.74 |
Table 1 Specific surface area, pore volume and pore size of catalysts
Catalyst | Specific surface area/(m2?g-1) | Pore volume/ (cm3?g-1) | Pore size/nm |
---|---|---|---|
SOB-3-4 | 31.29 | 0.32 | 20.40 |
ZnO | 24.39 | 0.24 | 19.74 |
[1] | YANG L L, WEI Q S, LI Z C, et al. Effects of dissolved organic matter (DOM) on photodegradation of metronidazole. Guangdong Chemical Industry, 2016,43(14):13-15. |
[2] |
INGERSLEV F, TORÄNG L, LOKE M L, et al. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere, 2001,44(4):865-872.
DOI URL |
[3] |
MÉNDEZ-DÍAZ J D, PRADOS-JOYA G, RIVERA-UTRILLA J, et al. Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase. Journal of Colloid and Interface Science, 2010,345(2):481-490.
DOI URL PMID |
[4] |
RIVERA-UTRILLA J, PRADOS-JOYA G, SÁNCHEZ-POLO M, et al. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. Journal of Hazardous Materials, 2009,170(1):298-305.
DOI URL PMID |
[5] |
FANG Z Q, QIU X Q, CHEN J H, et al. Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor. Applied Catalysis B: Environmental, 2010,100(1/2):221-228.
DOI URL |
[6] |
JOHNSON M B, MEHRVAR M. Aqueous metronidazole degradation by UV/H2O2 process in single-and multi-lamp tubular photoreactors: kinetics and reactor design. Industrial and Engineering Chemistry Research, 2008,47(17):6525-6537.
DOI URL |
[7] |
JOSS A, ZABCZYNSKI S, GÖBEL A, et al. Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Research, 2006,40(8):1686-1696.
DOI URL PMID |
[8] |
CARBALLA M, OMIL F, TERNES T, et al. Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Research, 2007,41(10):2139-2150.
DOI URL |
[9] |
HÖFL C, SIGL G, SPECHT O, et al. Oxidative degradation of aox and cod by different advanced oxidation processes: a comparative study with two samples of a pharmaceutical wastewater. Water Science and Technology, 1997,35(4):257-264.
DOI URL |
[10] |
AMMAR H B, BRAHIM M B, ABDELHÉDI R, et al. Enhanced degradation of metronidazole by sunlight via photo-Fenton process under gradual addition of hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 2016,420:222-227.
DOI URL |
[11] | LUO T T, WANG M, TIAN X K, et al. Safe and efficient degradation of metronidazole using highly dispersed beta-FeOOH on palygorskite as heterogeneous Fenton-like activator of hydrogen peroxide. Chemosphere, 2019,236:1-7. |
[12] |
SHEMER H, KUNUKCU Y K, LINDEN K G. Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere, 2006,63(2):269-276.
DOI URL |
[13] | XIONG Z H, CHEN Z X, LIU J M. Comparison of metronidazole degradation by different advanced oxidation processes in low concentration aqueous solutions. Chinese Journal of Environmental Engineering, 2009,3(3):465-469. |
[14] |
WANG X Y, WANG A Q, MA J. Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites. Journal of Hazardous Materials, 2017,336:81-92.
DOI URL PMID |
[15] |
RAI S C, WANG K, DING Y, et al. Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap Type-II ZnO/ZnS core/shell nanowire array. ACS Nano, 2015,9(6):6419-6427.
DOI URL PMID |
[16] |
QI K Z, CHENG B, YU J G, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 2017,727:792-820.
DOI URL |
[17] | GHOLAMI P, DINPAZHOH L, KHATAEE A, et al. Sonocatalytic activity of biochar-supported ZnO nanorods in degradation of gemifloxacin: synergy study, effect of parameters and phytotoxicity evaluation. Ultrasonics - Sonochemistry, 2019,55:44-56. |
[18] |
YANG Y, ZHUANG Y, HE Y H, et al. Fine tuning of the dimensionality of zinc silicate nanostructures and their application as highly efficient absorbents for toxic metal ions. Nano Research, 2010,3(8):581-593.
DOI URL |
[19] |
QIAO Z, YAN T J, ZHANG X F, et al. Low-temperature hydrothermal synthesis of Zn2SiO4 nanostructures and the novel photocatalytic application in wastewater treatment. Catalysis Communications, 2018,106:78-81.
DOI URL |
[20] |
XIE J, LI P, LI Y T, et al. Solvent-induced growth of ZnO particles at low temperature. Materials Letters, 2008,62(17/18):2814-2816.
DOI URL |
[21] | 陈嘉川, 刘温霞, 杨桂花, 等. 造纸植物资源化学. 北京: 科学出版社, 2012: 68-71. |
[22] | LI Y, HUA Y X, LIN Z Y. A novel process for synthesis of zinc silicate. Journal of Materials and Metallurgy, 2007,6(3):224-229. |
[23] |
ZU L H, QIN Y, YANG J H. In situ synergistic crystallization-induced synthesis of novel Au nanostar-encrusted ZnO mesocrystals with high-quality heterojunctions for high-performance gas sensors. Journal of Materials Chemistry A, 2015,3(19):10209-10218.
DOI URL |
[24] |
LUDI B, NIEDERBERGER M. Zinc oxide nanoparticles: chemical mechanisms and classical and non-classical crystallization. Dalton Transactions, 2013,42(35):12554-12568.
DOI URL |
[25] |
WANG L P, CHANG Y Z, LI A M. Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review. Renewable and Sustainable Energy Reviews, 2019,108:423-440.
DOI URL |
[26] | LI S J, MA Z C, WANG L, et al. Influence of MnO2 on the photocatalytic activity of P-25 TiO2 in the degradation of methyl orange. Science in China Series B:Chemistry, 2008,51(2):179-185. |
[27] |
YU C L, YANG K, YU J C, et al. Hydrothermal synthesis and photocatalytic performance of Bi2WO6/ZnO heterojunction photocatalysts. Journal of Inorganic Materials, 2011,26(11):1157-1163.
DOI URL |
[28] |
LIANG C, LIU Y, LI K, et al. Heterogeneous photo-Fenton degradation of organic pollutants with amorphous Fe-Zn-oxide/hydrochar under visible light irradiation. Separation and Purification Technology, 2017,188:105-111.
DOI URL |
[29] |
PLGNATELLO J J. Dark and photoassisted Fe 3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide . Environmental Science and Technology, 1992,26:944-951.
DOI URL |
[30] |
DÜKKANCI M, GÜNDÜZ G, YILMAZ S, et al. Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis. Journal of Hazardous Materials, 2010,181(1/2/3):343-350.
DOI URL PMID |
[1] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[2] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[3] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[4] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[5] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[6] | WANG Xiaojun, XU Wen, LIU Runlu, PAN Hui, ZHU Shenmin. Preparation and Properties of Ag@C3N4 Photocatalyst Supported by Hydrogel [J]. Journal of Inorganic Materials, 2022, 37(7): 731-740. |
[7] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[8] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[9] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
[10] | WANG Luping, LU Zhanhui, WEI Xin, FANG Ming, WANG Xiangke. Application of Improved Grey Model in Photocatalytic Data Prediction [J]. Journal of Inorganic Materials, 2021, 36(8): 871-876. |
[11] | AN Weijia, LI Jing, WANG Shuyao, HU Jinshan, LIN Zaiyuan, CUI Wenquan, LIU Li, XIE Jun, LIANG Yinghua. Fe(III)/rGO/Bi2MoO6 Composite Photocatalyst Preparation and Phenol Degradation by Photocatalytic Fenton Synergy [J]. Journal of Inorganic Materials, 2021, 36(6): 615-622. |
[12] | XIAO Xiang, GUO Shaoke, DING Cheng, ZHANG Zhijie, HUANG Hairui, XU Jiayue. CsPbBr3@TiO2 Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst [J]. Journal of Inorganic Materials, 2021, 36(5): 507-512. |
[13] | XIONG Jinyan, LUO Qiang, ZHAO Kai, ZHANG Mengmeng, HAN Chao, CHENG Gang. Facilely Anchoring Cu nanoparticles on WO3 Nanocubes for Enhanced Photocatalysis through Efficient Interface Charge Transfer [J]. Journal of Inorganic Materials, 2021, 36(3): 325-331. |
[14] | SHU Mengyang, LU Jialin, ZHANG Zhijie, SHEN Tao, XU Jiayue. CsPbBr3 Perovskite Quantum Dots/Ultrathin C3N4 Nanosheet 0D/2D Composite: Enhanced Stability and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2021, 36(11): 1217-1222. |
[15] | LIU Yaxin, WANG Min, SHEN Meng, WANG Qiang, ZHANG Lingxia. Bi-doped Ceria with Increased Oxygen Vacancy for Enhanced CO2 Photoreduction Performance [J]. Journal of Inorganic Materials, 2021, 36(1): 88-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||