Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (7): 822-826.DOI: 10.15541/jim20190404
Special Issue: 结构陶瓷论文精选(2020); 【虚拟专辑】分离膜,复相陶瓷(2020~2021)
• RESEARCH PAPER • Previous Articles Next Articles
LI Yanrui,LU Youjun(),LIU Yang,YUAN Zhenxia,HUANG Zhenkun
Received:
2019-08-12
Revised:
2019-09-10
Published:
2020-07-20
Online:
2019-10-25
Supported by:
CLC Number:
LI Yanrui,LU Youjun,LIU Yang,YUAN Zhenxia,HUANG Zhenkun. Reaction Synthesizes of ZrN and Phase Diagram in the Si3N4-ZrO2-La2O3 System[J]. Journal of Inorganic Materials, 2020, 35(7): 822-826.
Sample | SiO2/La2O3/ZrO2 | Phase composition (XRD analysis results*) |
---|---|---|
0.3S′0.5Z0.2L | 0.3/0.5/0.2 | La2Zr2O7(s) La2SiO5(m) La2O3(w) |
0.43S′0.46Z0.11L | 0.43/0.46/0.11 | La2Zr2O7(s) La4.67Si3O13(s) La2SiO5(m) |
0.2S′0.3Z0.5L | 0.2/0.3/0.5 | La2Zr2O7(vs) La4.67Si3O13(vs) ZrO2(w) |
0.5S′0.3Z0.2L | 0.5/0.3/0.2 | La2Si2O7(vs) La4.67Si3O13(vs) ZrO2(w) |
0.4S′0.1Z0.5L | 0.4/0.1/0.5 | ZrSiO4(vs) La2Si2O7(s) ZrO2(m) |
0.7S′0.1Z0.2L | 0.7/0.1/0.2 | ZrSiO4(vs) La2Si2O7(m) SiO2(w) |
Table 1 Phase compositions of the SiO2-La2O3-ZrO2 system after sintered at 1570 ℃
Sample | SiO2/La2O3/ZrO2 | Phase composition (XRD analysis results*) |
---|---|---|
0.3S′0.5Z0.2L | 0.3/0.5/0.2 | La2Zr2O7(s) La2SiO5(m) La2O3(w) |
0.43S′0.46Z0.11L | 0.43/0.46/0.11 | La2Zr2O7(s) La4.67Si3O13(s) La2SiO5(m) |
0.2S′0.3Z0.5L | 0.2/0.3/0.5 | La2Zr2O7(vs) La4.67Si3O13(vs) ZrO2(w) |
0.5S′0.3Z0.2L | 0.5/0.3/0.2 | La2Si2O7(vs) La4.67Si3O13(vs) ZrO2(w) |
0.4S′0.1Z0.5L | 0.4/0.1/0.5 | ZrSiO4(vs) La2Si2O7(s) ZrO2(m) |
0.7S′0.1Z0.2L | 0.7/0.1/0.2 | ZrSiO4(vs) La2Si2O7(m) SiO2(w) |
Fig. 1 XRD patterns of the samples of 0.3S′0.5Z0.2L and 0.43S′0.46Z0.11L (a), 0.2S′0.3Z0.5L and 0.5S′0.3Z0.2L (b),0.4S′0.1Z0.5L and 0.7S′0.1Z0.2L (c) sintered at 1570 ℃ for 1 h
Sample | Si3N4/ZrO2/La2O3 | Phase composition (XRD analysis results*) |
---|---|---|
1S3Z3L | 1/3/3 | La5Si3NO12(s) La2Zr2O7(s) ZrN(m) |
2S6Z3L | 2/6/3 | La4.67Si3O13 (vs) ZrN(vs) |
ZrO2(vw) | ||
3S9Z7L | 3/9/7 | La4.67Si3O13(vs) ZrN(m), |
4S9Z10L | 4/9/10 | La5Si3NO12(vs) ZrN(m) |
4S3Z6L | 4/3/6 | LaSiNO2 (vs) ZrN(w) La5Si3NO12(w) |
4S3Z12L | 4/3/12 | La4Si2N2O7(vs) ZrN(w) La5Si3NO12(w) |
8S3Z8L (1550 ℃) | 8/3/8 | LaSiNO2(vs) ZrN(w) La2Si6N8O3(w) |
Table 2 Phase compositions of the Si3N4-ZrO2-La2O3 system samples at 1500 ℃
Sample | Si3N4/ZrO2/La2O3 | Phase composition (XRD analysis results*) |
---|---|---|
1S3Z3L | 1/3/3 | La5Si3NO12(s) La2Zr2O7(s) ZrN(m) |
2S6Z3L | 2/6/3 | La4.67Si3O13 (vs) ZrN(vs) |
ZrO2(vw) | ||
3S9Z7L | 3/9/7 | La4.67Si3O13(vs) ZrN(m), |
4S9Z10L | 4/9/10 | La5Si3NO12(vs) ZrN(m) |
4S3Z6L | 4/3/6 | LaSiNO2 (vs) ZrN(w) La5Si3NO12(w) |
4S3Z12L | 4/3/12 | La4Si2N2O7(vs) ZrN(w) La5Si3NO12(w) |
8S3Z8L (1550 ℃) | 8/3/8 | LaSiNO2(vs) ZrN(w) La2Si6N8O3(w) |
T/℃ | ΔG/(kJ·mol-1) | T/℃ | ΔG/(kJ·mol-1) |
---|---|---|---|
1400 | -122.513 | 1600 | -139.531 |
1500 | -130.893 | 1700 | -148.436 |
Table 3 (4)Thermodynamic calculation results of reaction formula
T/℃ | ΔG/(kJ·mol-1) | T/℃ | ΔG/(kJ·mol-1) |
---|---|---|---|
1400 | -122.513 | 1600 | -139.531 |
1500 | -130.893 | 1700 | -148.436 |
Fig. 5 XRD patterns of the samples (a) 3S9Z7L and 4S9Z10L, (b) 4S3Z6L and 4S3Z12L after sintered at 1500 ℃ for 1 h, and (c) 8S3Z8L after sintered at 1550 ℃ for 1 h and the samples 2S0Z3L after sintered at 1500 ℃ for 1 h
[1] |
CHEN Y, DENG C, YU C, et al. Molten-salt nitridation synthesis of cubic ZrN nanopowders at low temperature via magnesium thermal reduction. Ceramics International, 2018,44(7):8710-8715.
DOI URL |
[2] |
FU B, GAO L. Synthesis of nanocrystalline zirconium nitride powders by reduction-nitridation of zirconium oxide. Journal of the American Ceramic Society, 2004,87(4):696-698.
DOI URL |
[3] | BRUGNON C, LANZA F, MACCHI G, et al. Evaluation of the wear resistance of ZrN coatings using thin layer activation. Surface and Coatings Technology, 1998,100:23-26. |
[4] |
TAKEYAMA M B, ITOI T, AOYAGI E, et al. High performance of thin nano-crystalline ZrN diffusion barriers in Cu/Si contact systems. Applied Surface Science, 2002,190(1-4):450-454.
DOI URL |
[5] |
TANG Y, ZHANG G J, XUE J X, et al. Densification and mechanical properties of hot-pressed ZrN ceramics doped with Zr or Ti. Journal of the European Ceramic Society, 2013,33(7):1363-1371.
DOI URL |
[6] |
LI Y, HUANG Z, XU Y, et al. Synthesis of ZrN-Sialon composites from zircon and alumina by carbothermal reduction-nitridation. Materials Research Bulletin, 2012,47(11):3273-3276.
DOI URL |
[7] |
SUN W Z, CHENG J G, HUANG Z K, et al. ZrC formation and the phase relations in the Si-Zr-Mg-O-C system. Journal of materials Science, 2016,51(17):8139-8147.
DOI URL |
[8] |
SUN W Z, CHENG J G, HUANG Z K, et al. ZrC formation and the phase relations in the SiC-SiO2-ZrC-ZrO2-CaO system. Ceramics International, 2016,42(8):10165-10170.
DOI URL |
[9] |
WEISS J, GAUCKLER L J, TIEN T Y. The System Si3N4-SiO2-ZrN-ZrO2. Journal of the American Ceramic Society, 1979,62(11/12):632-634.
DOI URL |
[10] |
WEISS J, GAUCKLER L J, LUKAS H L, et al. Determination of phase equilibria in the system Si-Al-Zr-N-O by experiment and thermodynamic calculation. Journal of Materials Science, 1981,16(11):2997-3005.
DOI URL |
[11] | JIANG G, WANG S. Study on mechanical properties and wear resistance of Si3N4-ZrO2 composites. Journal of the Chinese Ceramic Society, 1993(3):215-220. |
[12] | RAO P, YE J, MAO J, et al. Chemical incompatibility of ZrO2-Si3N4 ceramic composites. Journal of Inorganic Materials, 1999,14(5):711-716. |
[13] | JIANG G. Formation of ZrN in Si3N4-ZrO2 composite and its influence on mechanical properties. Journal of the Chinese Ceramic Society, 1995(5):580-583. |
[14] |
MITOMO M, IZUMI F, HORIUCHI S, et al. Phase relationships in the system Si3N4-SiO2-La2O3. Journal of Materials Science, 1982,17(8):2359-2364.
DOI URL |
[15] |
WU L, SUN W, CHEN Y, et al. Phase relations in Si-C-N-O-R (R= La, Gd, Y) systems. Journal of the American Ceramic Society, 2011,94(12):4453-4458.
DOI URL |
[16] | TIAN Z L, WANG J Y. Research progress of rare earth silicate ceramics. Advanced Ceramics, 2018,39(5):3-28. |
[17] | LU Y, YUAN Z, LI Y, et al. Effect of SrO on synthesis of ZrN in Si3N4-ZrO2-SrO system. Journal of the Chinese Ceramic Society, 2018,46(6):823-828. |
[18] |
DOERNER P, GAUCKLER L J, KRIEG H, et al. On the calculation and representation of multicomponent systems. Calphad, 1979,3(4):241-257.
DOI URL |
[19] |
KAMAEV D N, ARCHUGOV S A, MIKHAILOV G G. Study and thermodynamic analysis of the ZrO2-SiO2 system. Russian Journal of Applied Chemistry, 2005,78(2):200-203.
DOI URL |
[20] | ROTH R S. Pyrochlore-type compounds containing double oxides of trivalent and tetravalent ions. J. Res. Natl. Bur. Stand.(U.S.), 1956,56(8):17-25. |
[1] | WANG Yiliang, AI Yunlong, YANG Shuwei, LIANG Bingliang, ZHENG Zhenhuan, OUYANG Sheng, HE Wen, CHEN Weihua, LIU Changhong, ZHANG Jianjun, LIU Zhiyong. Facile Synthesis and Supercapacitor Performance of M3O4(M=FeCoCrMnMg) High Entropy Oxide Powders [J]. Journal of Inorganic Materials, 2021, 36(4): 425-430. |
[2] | CHEN Chun-Xia, LI Hao-Ran, ZHENG Ren-Kui. Properties of Multiferroic PrBi4Fe0.5Co0.5Ti3O15 Ceramics [J]. Journal of Inorganic Materials, 2015, 30(5): 511-515. |
[3] | LIU Ying, LAI Fa-Chun, Huang Zhi-Gao, SHEN Dong-Quan, LONG Xi-Fa. Preparation and Characterization of A New Ferroelectric Ternary Solid Solution Pb(Lu1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 [J]. Journal of Inorganic Materials, 2014, 29(9): 912-916. |
[4] | WU Xing, LI Hai-Feng, ZHOU Jin-Ling, HUO Min-Feng, CHENG Cheng, SHEN Xu-Gen, YAN Chun-Jie. Fabrication and Properties of Highly Pure BiFeO3 Using A Method of Solid State Reaction-molten Salt Synthesis with Non-equilibrium Process [J]. Journal of Inorganic Materials, 2014, 29(11): 1151-1155. |
[5] | XIE Hui, YUAN Shu-Juan, KANG Bao-Juan, LU Bo, CAO Shi-Xun, ZHANG Jin-Cang. Giant Magnetodielectric Effect and Magnetic Properties of Ho0.5Pr0.5FeO3 Ceramics [J]. Journal of Inorganic Materials, 2014, 29(1): 77-80. |
[6] | SUN Pei-Qiu, ZHU De-Gui, JIANG Xiao-Song, SUN Hong-Liang, XIA Zhao-Hui. Research on Microstructures and Properties of in-situ Synthesis of TiB2-TiC0.8-SiC Multiphase Ceramics [J]. Journal of Inorganic Materials, 2013, 28(4): 363-368. |
[7] | ZHENG Qin, JIANG Wei-Hui, YU Yun, CAO Yun-Zhen, YU Yang, MI Le, SONG Li-Xin. Research of Painting-type La1-xSrxMnO3 Smart Thermal Control Coating [J]. Journal of Inorganic Materials, 2012, 27(3): 245-248. |
[8] | LIU Shao-You, TANG Wen-Hua, FENG Qing-Ge, LI Ju-Zhi, SUN Jian-Hua. Synthesis of N, Fe Co-doped TiO2 Nanomaterials via Solid State Reaction and Their Photodegradation of Quinoline Irradiated under Visible Light [J]. Journal of Inorganic Materials, 2010, 25(9): 921-927. |
[9] | SHI Yun,PAN Yu-Bai,FENG Xi-Qi,LI Jiang,Guo Jin-Kun. Fabrication and Luminescence Study of Ce3+-doped YAG Transparent Ceramics [J]. Journal of Inorganic Materials, 2010, 15(2): 125-128. |
[10] | ZHUANG Jia,CHI Yan-Hua,WANG Dong. Preparation of Different Topography NiCo2O4 with Surfactant by Solid [J]. Journal of Inorganic Materials, 2007, 22(1): 40-44. |
[11] | HU Yun-Chu,WU Zhi-Ping,SUN Han-Zhou,Zhou Ying,LIU Yuan. Synthesis of Nano Zinc Borate Fire Retardant by Solid State Reaction [J]. Journal of Inorganic Materials, 2006, 21(4): 815-820. |
[12] | SUN Jian-Zhi,DENG Xiao-Chuan,SONG Shi-Tao,LI Fa-Qiang,MA Pei-Hua. Preparation and Properties of Novel Na Specific Adsorbent Li1+xAlxTi2-x(PO4)3 [J]. Journal of Inorganic Materials, 2006, 21(1): 169-175. |
[13] | WANG Hai-Ying,WANG Ru-Ji,ZHANG Yue,LI Ya-Dong. Synthesis and Luminescent Properties of Eu3+ Doped Strontium Borate Phosphors [J]. Journal of Inorganic Materials, 2004, 19(6): 1367-1372. |
[14] | LI Zhi-Min,QIU Wei-Hua,HU Huan-Yu,ZHAO Hai-Lei,GAO Chang-He. Optimized Synthesis of LiMn2O4 Cathode Materials for Li-ion Batteries [J]. Journal of Inorganic Materials, 2004, 19(2): 342-348. |
[15] | TANG Wen-Ming,ZHENG Zhi-Xiang,DING Hou-Fu,JIN Zhi-Hao,TANG Tao. A Model of the Solid State Reaction of SiC/Fe [J]. Journal of Inorganic Materials, 2003, 18(4): 885-891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||