Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (5): 525-531.DOI: 10.15541/jim20190300
Previous Articles Next Articles
WANG Pengren,GOU Yanzi(),WANG Hao
Received:
2019-06-20
Revised:
2019-07-29
Published:
2020-05-20
Online:
2019-09-12
Supported by:
CLC Number:
WANG Pengren, GOU Yanzi, WANG Hao. Third Generation SiC Fibers for Nuclear Applications[J]. Journal of Inorganic Materials, 2020, 35(5): 525-531.
Trade mark | Tensile strength/GPa | Young’s modulus/GPa | Diameter/μm | C/Si | |
---|---|---|---|---|---|
First generation | Nicalon 200 | 3.0 | 200 | 14 | 1.33 |
Tyranno Lox-M | 3.3 | 185 | 11 | 1.38 | |
KD-I | >2.5 | >170 | 11.5 | 1.29 | |
Second generation | Hi-Nicalon | 2.8 | 270 | 12 | 1.39 |
Tyranno ZE | 3.5 | 233 | 11 | 1.34 | |
KD-II | >2.7 | >250 | 11.5 | 1.35-1.40 | |
Third generation | Hi-Nicalon S | 2.6 | 340 | 12.0 | 1.05 |
KD-S | 2.7 | 310 | 11.0 | 1.08 | |
Tyranno SA | 2.8 | 375 | 8.0&10.0 | 1.08 | |
KD-SA | 2.5 | 350 | 10.5 | 1.05 | |
Sylramic | 3.2 | 400 | 10.0 | 1.01 |
Table 1 Compositions and mechanical properties of three generations SiC fibers[5,13-18]
Trade mark | Tensile strength/GPa | Young’s modulus/GPa | Diameter/μm | C/Si | |
---|---|---|---|---|---|
First generation | Nicalon 200 | 3.0 | 200 | 14 | 1.33 |
Tyranno Lox-M | 3.3 | 185 | 11 | 1.38 | |
KD-I | >2.5 | >170 | 11.5 | 1.29 | |
Second generation | Hi-Nicalon | 2.8 | 270 | 12 | 1.39 |
Tyranno ZE | 3.5 | 233 | 11 | 1.34 | |
KD-II | >2.7 | >250 | 11.5 | 1.35-1.40 | |
Third generation | Hi-Nicalon S | 2.6 | 340 | 12.0 | 1.05 |
KD-S | 2.7 | 310 | 11.0 | 1.08 | |
Tyranno SA | 2.8 | 375 | 8.0&10.0 | 1.08 | |
KD-SA | 2.5 | 350 | 10.5 | 1.05 | |
Sylramic | 3.2 | 400 | 10.0 | 1.01 |
Brand name | Fiber type | Preparation technology | Tensile strength at room temperature / MPa | Failure duration |
---|---|---|---|---|
Hypercomp PP-HN | Hi-Nicalon | MI | 321 | >1000 h/1200 ℃ |
Hypercomp SC-HN | Hi-Nicalon | MI | 358 | >1000 h/1200 ℃ |
N22 | Sylramic | CVI+MI | 400 | ~500 h/1204 ℃ |
N24-A | Sylramic-iBN | CVI+MI | 450 | ~500 h/1315 ℃ |
N24-B | Sylramic-iBN | CVI+MI | 450 | ~500 h/1315 ℃ |
N24-C | Sylramic-iBN | CVI+MI | 310 | >1000 h/1315 ℃ |
N26 | Sylramic-iBN | CVI+PIP | 330 | ~300 h/1450 ℃ |
A410 | Hi-Nicalon | CVI | 200-315 | 600 h/1200 ℃ |
A416 | Hi-Nicalon S | CVI | 200-315 | 200 h/1400 ℃ |
Table 2 Different SiCf/SiC composites and their properties[46]
Brand name | Fiber type | Preparation technology | Tensile strength at room temperature / MPa | Failure duration |
---|---|---|---|---|
Hypercomp PP-HN | Hi-Nicalon | MI | 321 | >1000 h/1200 ℃ |
Hypercomp SC-HN | Hi-Nicalon | MI | 358 | >1000 h/1200 ℃ |
N22 | Sylramic | CVI+MI | 400 | ~500 h/1204 ℃ |
N24-A | Sylramic-iBN | CVI+MI | 450 | ~500 h/1315 ℃ |
N24-B | Sylramic-iBN | CVI+MI | 450 | ~500 h/1315 ℃ |
N24-C | Sylramic-iBN | CVI+MI | 310 | >1000 h/1315 ℃ |
N26 | Sylramic-iBN | CVI+PIP | 330 | ~300 h/1450 ℃ |
A410 | Hi-Nicalon | CVI | 200-315 | 600 h/1200 ℃ |
A416 | Hi-Nicalon S | CVI | 200-315 | 200 h/1400 ℃ |
[1] |
ICHIKAWA H . Polymer-derived ceramic fibers. Annual Review of Materials Research, 2016,46(1):335-356.
DOI URL |
[2] |
ZHAO S, ZHOU X G, YU J S , et al. Research and development in fabrication and properties of SiC/SiC composites. Materials Reports, 2013,27(1):66-70.
DOI URL PMID |
[3] |
GOU Y Z, WANG H, JIAN K , et al. Preparation and characterization of SiC fibers with diverse electrical resistivity through pyrolysis under reactive atmospheres. Journal of the European Ceramic Society, 2017,37:517-522.
DOI URL |
[4] |
YAJIMA S, HAYASHI J, OMORI M . Continuous SiC fiber of high tensile strength. Chemistry Letters, 1975,4(9):931-934.
DOI URL PMID |
[5] |
BUNSELL A R, PIANT A . A review of the development of three generations of small diameter silicon carbide fibres. Journal of Materials Science, 2006,41(3):823-839.
DOI URL |
[6] | ISHIKAWA T . Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi-Nicalon for ultra-high temperature. Composites Science & Technology, 1994,51(2):135-144. |
[7] | YAMAMURA T, ISHIKAWA T, SHIBUYA M , et al. Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor. Journal of Materials Science, 1988,23(7):2589-2594. |
[8] |
VAHLAS C, MONTHIOUX M . On the thermal degradation of lox-M tyranno ® fibres. Journal of the European Ceramic Society, 1995,15(5):445-453.
DOI URL |
[9] | SHIBUYA M, YAMAMURA T . Characteristics of a continuous Si-Ti-C-O fibre with low oxygen content using an organometallic polymer precursor. Journal of Materials Science, 1996,31(12):3231-3235. |
[10] |
SHIMOO T, HAYATSU T, TAKEDA M , et al. High-temperature decomposition of low-oxygen SiC fiber under N2 atmosphere. Journal of the Ceramic Society of Japan, 2010,102(1192):1142-1147.
DOI URL |
[11] | TAKEDA M, IMAI Y, ICHIKAWA H , et al. Thermal stability of SiC fiber prepared by an irradiation-curing process. Composites Science & Technology, 1999,59(6):793-799. |
[12] | CHOLLON G, PAILLER R, NASLAIN R , et al. Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi-Nicalon). Journal of Materials Science, 1997,32(2):327-347. |
[13] | CHEN D R, HAN W J, LI S W , et al. Fabrication, microstructure, properties and applications of continuous ceramic fibers: a review of present status and further directions. Advanced Ceramics, 2018,39(3):151-222. |
[14] |
GOU Y Z, JIAN K, WANG H , et al. Fabrication of nearly stoichiometric polycrystalline SiC fibers with excellent high-temperature stability up to 1900 ℃. Journal of the American Ceramic Society, 2017,101(5):1-10.
DOI URL |
[15] | 曹适意 . KD系列连续碳化硅纤维组成、结构与性能关系研究. 长沙: 国防科技大学博士学位论文, 2017. |
[16] | 王军, 宋永才, 王浩 , 等. 先驱体转化法制备碳化硅纤维. 北京: 科学出版社, 2018: 82-83. |
[17] | ZU M, ZOU S M, HAN S , et al. Effects of heat treatment on the microstructures and properties of KD-I SiC fibres. Materials Research Innovations, 2015,19:437-441. |
[18] | BAI W C, JIAN K . The microstructure and elctrical resistivity of near-stoichiometric SiC fiber. IOP Conf. Series: Materials Science and Engineering, 2019,490(Chapter 1):22057-22065. |
[19] |
COUSTUMER P L, MONTHIOUX M, OBERLIN A . Understanding Nicalon Fibre. Journal of the European Ceramic Society, 1993,11(2):95-103.
DOI URL |
[20] |
PORTE L, SARTRE A . Evidence for a silicon oxycarbide phase in the Nicalon silicon carbide fibre. Journal of Materials Science, 1989,24(1):271-275.
DOI URL |
[21] | ISHIKAWA T, KOHTOKU Y, KUMAGAWA K , et al. High-strength alkali-resistant sintered SiC fibre stable to 2,200 ℃. Nature, 1998,391(6669):773-775. |
[22] | TAKEDA M, SAKAMOTO J, IMAI Y , et al. Properties of Stoichiometric Silicon Carbide Fiber Derived from Polycarbosilane. Proceedings of the 18th Annual Conference on Composites and Advanced Ceramic Materials - A: Ceramic Engineering and Science Proceedings, Cocoa Beach, Florida, U.S., 1994: 133-141. |
[23] | YUN H M, DICARLO J A, BHATT R T , et al. Processing and Structural Advantages of the Sylramic-iBN SiC Fiber for SiC/SiC Components. 27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites-B: Ceramic Engineering and Science Proceedings, Cocoa Beach, Florida, U.S., 2008: 247-253. |
[24] | ISHIKAWA T, KAJII S, HISAYUKI T , et al. New type of SiC- sintered fiber and its composite material. Key Engineering Materials, 2008,164(3):283-290. |
[25] | ISHIKAWA T . Advances in inorganic fibers. Polymeric and Inorganic Fibers, 2005,178:109-144. |
[26] |
DICARLO J A . Creep limitations of current polycrystalline ceramic fibers. Composites Science & Technology, 1994,51(2):213-222.
URL PMID |
[27] | 赵大方 . SA型碳化硅纤维的连续化技术研究. 长沙: 国防科学技术大学博士学位论文, 2008. |
[28] |
SUGIMOTO M, SHIMOO T, OKAMURA K , et al. Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation, part 1evolved gas analysis. Journal of the American Ceramic Society, 1995,78(4):1013-1017.
DOI URL |
[29] | ICHIKAWA H . Recent advances in Nicalon ceramic fibres including Hi-Nicalon type S. Annales de Chimie-Sciences des Materiaux, 2000,25(7):523-528. |
[30] |
ZHANG Y, WU C, WANG Y , et al. A detailed study of the microstructure and thermal stability of typical SiC fibers. Materials Characterization, 2018,146:91-100.
DOI URL |
[31] |
XIE Z F, GOU Y Z . Polyaluminocarbosilane as precursor for aluminium- containing SiC fiber from oxygen-free sources. Ceramics International, 2016,42:10439-10443.
DOI URL |
[32] |
GOU Y Z, WANG H, JIAN K , et al. Facile synthesis of melt- spinnablepolyaluminocarbosilane using low-softening-point polycarbosilane for Si-C-Al-O fibers. Journal of Materials Science, 2016,51:8240-8249.
DOI URL |
[33] | YUN H M, DICARLO J A . Comparison of the Tensile, Creep, and Rupture Strength Properties of Stoichiometric SiC Fibers. 23rd Annual Conference on Composites, Advanced Ceramics, Materials, and structures: A: Ceramic Engineering and Science Proceedings, Cocoa Beach, Florida, U.S., 1999. |
[34] |
MORSCHER G N, HURST J, BREWER D . Intermediate-temperature stress rupture of a woven Hi-Nicalon, BN-interphase, SiC- matrix composite in air. Journal of the American Ceramic Society, 2010,83(6):1441-1449.
DOI URL |
[35] |
KATOH Y, SNEAD L L, JR C H H , et al. Current status and critical issues for development of SiC composites for fusion applications. Journal of Nuclear Materials, 2007, 367- 370(part-PA):659-671.
DOI URL |
[36] |
GOU Y Z, WANG H, JIAN K . Formation of carbon-rich layer on the surface of SiC fiber by sintering under vacuum for superior mechanical and thermal properties. Journal of the European Ceramic Society, 2016,37:907-914
DOI URL |
[37] |
JI X Y, WANG S S, SHAO C W , et al. The high-temperature corrosion behavior of SiBCN fibers for aerospace applications. ACS Applied Materials & Interfaces, 2018,10(23):19712-19720.
DOI URL PMID |
[38] |
RICCARDI B, TRENTINI E, LABANTI M , et al. Characterization of commercial grade Tyranno SA/CVI-SiC composites. Journal of Nuclear Materials, 2007, 367- 370(part-PA):672-676.
DOI URL |
[39] | HILLIG W B . Making ceramic composites by melt infiltration. American Ceramic Society Bulletin, 1994,73(4):56-62. |
[40] | MORSCHER G N . Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites. Composites Science & Technology, 2004,64(9):1311-1319. |
[41] | MORSCHER G N, REJI J, LARRY Z , et al. Creep in vacuum of woven Sylramic-iBN melt-infiltrated composites. Composites Science & Technology, 2011,71(1):52-59. |
[42] |
SINGH M . Microstructure and mechanical properties of reaction- formed joints in reaction-bonded silicon carbide ceramics. Journal of Materials Science, 1998,33(24):5781-5787.
DOI URL |
[43] |
KOHYAMA A, PARK J S, JUNG H C . Advanced SiC fibers and SiC/SiC composites toward industrialization. Journal of Nuclear Materials, 2011,417(1/2/3):340-343.
DOI URL |
[44] |
DONG S, KATOH Y, KOHYAMA A . Processing optimization and mechanical evaluation of hot pressed 2D Tyranno-SA/SiC composites. Journal of the European Ceramic Society, 2003,23(8):1223-1231.
DOI URL |
[45] |
KISHIMOTO H, OZAWA K, HASHITOMI O , et al. Microstructural evolution analysis of NITE SiC/SiC composite using TEM examination and dual-ion irradiation. Journal of Nuclear Materials, 2007, 367- 370(part-PA):748-752.
DOI URL |
[46] | WANG J, LIAN Y L, HAN X F . Research and application of polyimide composites for aeroengine. Aeronautical Manufacturing Technology, 2017. |
[47] | HINOKI T, SNEAD L L, KATOH Y , et al. The effect of high dose/high temperature irradiation on high purity fibers and their silicon carbide composites. Journal of Nuclear Materials, 2008,307(3):1157-1162. |
[48] |
HOLLENBERG G W, JR C H H, YOUNGBLOOD G E , et al. The effect of irradiation on the stability and properties of monolithic silicon carbide and SiCf/SiC composites up to 25 dpa. Journal of Nuclear Materials, 1994,219(2):70-86.
DOI URL |
[49] | NEWSOME G A . The effect of neutron irradiation on silicon carbide fibers. John Wiley & Sons, Inc. 1997: 579-583. |
[50] |
KATOH Y, OZAWA K, SHIH C , et al. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects. Journal of Nuclear Materials, 2014,448(1/2/3):448-476.
DOI URL |
[51] | EHRLICH K . Materials research towards a fusion reactor. Fusion Engineering & Design, 2001,56(1):71-82. |
[52] | NOZAWA T, HINOKI T, HASEGAWA A , et al. Recent advances and issues in development of silicon carbide composites for fusion applications. Journal of Nuclear Materials, 2010,41(17):622-627. |
[53] |
ZHAO S, ZHOU X G, YU H , et al. Compatibility of PIP SiCf/SiC with LiPb at 700 ℃. Fusion Engineering & Design, 2010,85(7/8/9):1624-1626.
DOI URL |
[54] |
KATOH Y, NOZAWA T, SHIH C , et al. High-dose neutron irradiation of Hi-Nicalon type S silicon carbide composites. Part 2: Mechanical and physical properties. Journal of Nuclear Materials, 2015,462:450-457.
DOI URL |
[55] | JONES R H, GIANCARLI L, HASEGAWA A , et al. Promise and challenges of SiCf/SiC composites for fusion energy applications. Journal of Nuclear Materials, 2002,307(3):1057-1072. |
[56] | UEDA S, NISHIO S, SEKI Y , et al. A fusion power reactor concept using SiC/SiC composites. Journal of Nuclear Materials, 1998, s258- 263(98):1589-1593. |
[57] | SNEAD L L, JONES R H, KOHYAMA A , et al. Status of silicon carbide composites for fusion. Journal of Nuclear Materials, 1996, s233- 237(96):26-36. |
[58] | HASEGAWA A, KOHYAMA A, JONES R H , et al. Critical issues and current status of SiCf/SiC composites for fusion. Journal of Nuclear Materials, 2000,s(283-287):128-137. |
[59] |
SENOR D J, YOUNGBLOOD G E, MOORE C E , et al. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics. Fusion Technology, 1996,30(3):943-955.
DOI URL |
[60] |
JONES R H, STEINER D, HEINISCH H L , et al. Radiation resistant ceramic matrix composites. Journal of Nuclear Materials, 1997,245(2/3):87-107.
DOI URL PMID |
[61] | YAMADA R, IGAWA N, TAGUCHI T . Thermal diffusivity/conductivity of Tyranno SA fiber- and Hi-Nicalon type S fiber-reinforced 3-D SiC/SiC composites. Journal of Nuclear Materials, 2004,329(1):497-501. |
[62] | NISHIO S, UEDA S, KURIHARA R , et al. Prototype tokamak fusion reactor based on SiC/SiC composite material focusing on easy maintenance. Fusion Engineering & Design, 2000,48(3/4):271-279. |
[63] |
IHLI T, BASU T K, GIANCARLI L M , et al. Review of blanket designs for advanced fusion reactors. Fusion Engineering & Design, 2008,83(7/8/9):912-919.
DOI URL |
[64] | NORAJITRA P, BUHLER L, FISCHER U , et al. The EU advanced lead lithium blanket concept using SiCf/SiC flow channel inserts as electrical and thermal insulators. Fusion Engineering & Design, 2001,s(58/59):629-634. |
[65] |
NORAJITRA P, ABDEL-KHALIK S I, GIANCARLI L M , et al. Divertor conceptual designs for a fusion power plant. Fusion Engineering & Design, 2008,83(7):893-902.
DOI URL |
[66] | PUMA A L, GIANCARLI L, GOLFIER H , et al. Potential performances of a divertor concept based on liquid metal cooled SiCf/SiC structures. Fusion Engineering & Design, 2003, s66- 68(3):401-405. |
[67] | SATORI K, KISHIMOTO H, PARK J S , et al. Thermal insulator of porous SiC/SiC composites for fusion blanket system. Materials Science and Engineering Conference Series, 2011: 2150-2159. |
[68] |
KISHIMOTO H, ABE T, PARK J S , et al. SiC/SiC and W/SiC/SiC composite heater by NITE-method for IFMIF and fission reactor irradiation rigs. IOP Conference Series: Materials Science and Engineering, 2011,18(16):162018-162022.
DOI URL |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||