Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (1): 112-118.DOI: 10.15541/jim20190298
Special Issue: MAX相和MXene材料; 2020年能源材料论文精选(二):超级电容器; MXene材料专辑(2020~2021); 【虚拟专辑】超级电容器(2020~2021)
Previous Articles Next Articles
ZHANG Tian-Yu1,CUI Cong1,2,CHENG Ren-Fei1,2,HU Min-Min1,2,WANG Xiao-Hui1()
Received:
2019-06-20
Revised:
2019-07-31
Published:
2020-01-20
Online:
2019-10-25
About author:
ZHANG Tian-Yu(1996-), male, Master candidate. E-mail:tyzhang@vip.jiangnan.edu.cn
CLC Number:
ZHANG Tian-Yu, CUI Cong, CHENG Ren-Fei, HU Min-Min, WANG Xiao-Hui. Fabrication of Planar Porous MXene/Carbon Composite Electrodes by Simultaneous Ammonization/Carbonization[J]. Journal of Inorganic Materials, 2020, 35(1): 112-118.
Fig. 1 (a) Optical photographs of porous Ti3AlC2 monolith, aqueous suspension and TEM image of Ti3C2Tx MXene with inset showing the Tyndall effect of MXene; and (b) fabrication process of MXene/carbon planar porous electrode by simultaneous ammonization/carbonization
Fig. 3 SEM images of surface morphology of Ti3C2Tx MXene planar electrode (a) and High-Angle Annular Dark Field (HAADF) image of Ti3C2Tx MXene after simultaneous ammonization/carbonization (b)
Fig. 5 Comparison of areal capacitance (a) and specific capacitance (b) among the values of Ti3C2Tx MXene/carbon planar porous electrode obtained in this work and those in the literature
[1] |
MIRÓ P, AUDIFFRED M, HEINE T . An atlas of two-dimensional materials. Chemical Society Reviews, 2014,43(18):6537-6554.
DOI URL |
[2] |
XU M, LIANG T, SHI M , et al.Graphene-like two-dimensional materials.Chemical Reviews 2013,113(5):3766-3798.
DOI URL PMID |
[3] |
CAHANGIROV S, TOPSAKAL M, AKTURK E , et al.Two- and one-dimensional honeycomb structures of silicon and germanium. Physical Review Letters, 2009,102(23):236804.
DOI URL PMID |
[4] |
LALMI B, OUGHADDOU H, ENRIQUEZ H , et al.Epitaxial growth of a silicene sheet. Applied Physics Letters, 2010,97(22):223109.
DOI URL PMID |
[5] |
LIU H, NEAL A T, ZHU Z , et al.Phosphorene: an unexplored 2D semiconductor with a high hole mobility.ACS Nano, 2014,8(4):4033-4041.
DOI URL PMID |
[6] |
ATACA C, SAHIN H, CIRACI S . Stable, single-layer MX2 transition- metal oxides and dichalcogenides in a honeycomb-like structure. Journal of Physical Chemistry C, 2012,116(16):8983-8999.
DOI URL |
[7] |
ZHOU Y C, XIANG H M, WANG X H , et al.Electronic structure and mechanical properties of layered compound YB2C2: a promising precursor for making two dimensional (2D) B2C2 nets.Journal of Materials Science & Technology, 2017,33(9):1044-1054.
DOI URL PMID |
[8] |
NICOLOSI V, CHHOWALLA M, KANATZIDIS M G , et al.Liquid exfoliation of layered materials.Science, 2013,340(6139):1226419.
DOI URL PMID |
[9] |
NAGUIB M, KURTOGLU M, PRESSER V , et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2.Advanced Materials, 2011,23(37):4248-4253.
DOI URL PMID |
[10] |
MICHAEL N, OLHA M, JOSHUA C , et al.Two-dimensional transition metal carbides.ACS Nano, 2012,6(2):1322-1331.
DOI URL PMID |
[11] |
ZHANG X, XU J, WANG H , et al.Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2..Angewandte Chemie-International Edition, 2013,52(16):4361-4365.
DOI URL PMID |
[12] |
MASHTALIR O, NAGUIB M, DYATKIN B , et al.Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid..Materials Chemistry and Physics, 2013,139(1):147-152.
DOI URL |
[13] |
GHIDIU M, NAGUIB M, SHI C , et al.Synthesis and characterization of two-dimensional Nb4C3(MXene). Chemical Communications, 2014,50(67):9517-9520.
DOI URL |
[14] |
ZHOU J, ZHA X H, CHEN F Y , et al.A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5.Angewandte Chemie-International Edition, 2016,55(16):5008-5013.
DOI URL PMID |
[15] |
ANASORI B, LUKATSKAYA MR, GOGOTSI Y . 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017,2(2):16098.
DOI URL PMID |
[16] |
KHAZAEI M, RANJBAR A, ARAI M , et al.Electronic properties and applications of MXenes: a theoretical review..Journal of Materials Chemistry C, 2017,5(10):2488-2503.
DOI URL PMID |
[17] |
ZHU J, HA E, ZHAO G , et al.Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption..Coordination Chemistry Reviews, 2017,352:306-327.
DOI URL |
[18] |
HANTANASIRISAKUL K, GOGOTSI Y . Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Advanced Materials, 2018,30(52):1804779.
DOI URL PMID |
[19] |
LI X, WANG C, CAO Y , et al.Functional MXenes materials: progress of their applications..Chemistry-An Asian Journal, 2018,13(19):2742-2757.
DOI URL PMID |
[20] |
LIN H, CHEN Y, SHI J . Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Advanced Science, 2018,5(10):1800518.
DOI URL PMID |
[21] |
WANG H, WU Y, YUAN X , et al.Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges..Advanced Materials, 2018,30(12):1704561.
DOI URL PMID |
[22] |
DIAO J Y, HU M M, LIAN Z , et al.Ti3C2Tx MXene catalyzed ethylbenzene dehydrogenation: active sites and mechanism exploration from both experimental and theoretical aspects.ACS Catalysis, 2018,8(11):10051-10057.
DOI URL |
[23] |
YOON Y, LEE K, LEE H . Low-dimensional carbon and MXene- based electrochemical capacitor electrodes. Nanotechnology, 2016,27(17):172001.
DOI URL PMID |
[24] |
ZHANG X, ZHANG Z, ZHOU Z . MXene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 2018,27(1):73-85.
DOI URL PMID |
[25] |
PANG J, MENDES R G, BACHMATIUK A , et al.Applications of 2D MXenes in energy conversion and storage systems..Chemical Society Reviews, 2019,48(1):72-133.
DOI URL PMID |
[26] |
YANG Q, WANG Y, LI X , et al.Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices..Energy & Environmental Materials, 2018,1(4):183-195.
DOI URL PMID |
[27] |
WANG X H, ZHOU Y C . Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic. Journal of Materials Chemistry, 2002,12(3):455-460.
DOI URL |
[28] |
CHENG R F, HU T, ZHANG H , et al.Understanding the lithium storage mechanism of Ti3C2Tx MXene.Journal of Physical Chemistry C, 2019,123(2):1099-1109.
DOI URL |
[29] |
HU M M, CUI C, SHI C , et al.High-energy-density hydrogen-ion- rocking-chair hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule.ACS Nano, 2019,13(6):6899-6905.
DOI URL PMID |
[30] |
HU M M, LI Z J, ZHANG H , et al.Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance.Chemical Communications, 2015,51(70):13531-13533.
DOI URL PMID |
[31] | HU M M, LI Z J, LI G X , et al.All-solid-state flexible fiber-based MXene supercapacitors. Advanced Materials Technology, 2017,2(10):1700143. |
[32] |
HU M M, HU T, CHENG R F , et al.MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application. Journal of Energy Chemistry, 2018,27(1):161-166.
DOI URL PMID |
[33] |
HU M M, LI Z J, HU T , et al.High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation.ACS Nano, 2016,10(12):11344-11350.
DOI URL PMID |
[34] |
HU M M, HU T, LI Z J , et al.Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene.ACS Nano, 2018,12(4):3578-3586.
DOI URL PMID |
[35] |
ZHU Y W, MURALI S, STOLLER M D , et al.Carbon-based supercapacitors produced by activation of graphene.Science, 2011,332(6037):1537-1541.
DOI URL |
[36] |
HU T, LI Z J, HU M M , et al.Chemical origin of termination- functionalized MXenes: Ti3C2T2 as a case study.Journal of Physical Chemistry C, 2017,121(35):19254-19261.
DOI URL PMID |
[37] |
YAN J, REN C E, MALESKI K , et al.Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 2017,27(30):1701264.
DOI URL |
[38] |
LUKATSKAYA M R, BAK S M, YU X Q , et al.Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy.Advanced Energy Materials, 2015,5(15):1500589
DOI URL |
[39] |
HU L B, PASTA M, LA MANTIA F , et al.Stretchable, porous, and conductive energy textiles.Nano Letters, 2010,10(2):708-714.
DOI URL PMID |
[40] |
PASTA M, LA MANTIA F, HU L B , et al.Aqueous supercapacitors on conductive cotton. Nano Research, 2010,3(6):452-458.
DOI URL |
[41] |
WANG Y S, LI S M, HSIAO S T , et al.Integration of tailored reduced graphene oxide nanosheets and electrospun polyamide-66 nanofabrics for a flexible supercapacitor with high-volume- and high-area-specific capacitance. Carbon, 2014,73:87-98.
DOI URL |
[42] |
ZHOU Q L, YE X K, WAN Z Q , et al.A three-dimensionalflexible supercapacitor with enhancedperformance based on lightweight, conductive graphene-cotton fabricelectrode.Journal of Power Sources, 2015,296:186-196.
DOI URL |
[43] |
YOO J E, BAE J . High-performance fabric-based supercapacitors using water-dispersible polyaniline-poly(2-acrylamido-2-methyl- 1-propanesulfonic acid). Macromolecular Research, 2015,23(8):749-754.
DOI URL |
[44] |
JOST K, PEREZ C R, MCDONOUGH J K , et al.Carbon coated textiles for flexible energy storage.Energy & Environmental Science, 2011,4(12):5060-5067.
DOI URL PMID |
[45] |
KURRA N, AHMED B, GOGOTSI Y , et al.MXene-on-paper coplanar microsupercapacitors..Advanced Energy Materials, 2016,6(24):1600969.
DOI URL |
[46] |
FRACKOWIAK E, DELPEUX S, JUREWICZ K , et al.Enhanced capacitance of carbon nanotubes through chemical activation.Chemical Physics Letters, 2002,361(1/2):35-41.
DOI URL PMID |
[47] |
DU X, ZHAO W, WANG Y , et al.Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications. Bioresource Technology, 2013,149:31-37.
DOI URL |
[48] |
WANG Y, SHI Z, HUANG Y , et al.Supercapacitor devices based on graphene materials. The Journal of Physical Chemistry C, 2009,113(30):13103-13107.
DOI URL PMID |
[49] |
WANG P, ZHAO Y J, WEN L X ,et al. Ultrasound-microwave- assisted synthesis of MnO2 supercapacitor electrode materials.Industrial & Engineering Chemistry Research, 2014,53(52):20116-20123.
DOI URL PMID |
[50] |
ZHENG J P, CYGAN P J, JOW T R . Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. Journal of the Electrochemical Society, 1995,142(8):2699-2703.
DOI URL PMID |
[51] |
SNOOK G A, KAO P, BEST A S . Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 2011,196(1):1-12.
DOI URL |
[1] | YANG Endong, LI Baole, ZHANG Ke, TAN Lu, LOU Yongbing. ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors [J]. Journal of Inorganic Materials, 2024, 39(5): 485-493. |
[2] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[3] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. |
[4] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[5] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
[6] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. |
[7] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[8] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
[9] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. |
[10] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[11] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[12] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[13] | CAI Kai, JIN Zhiwen. Photodetector Based on Two-dimensional Perovskite (PEA)2PbI4 [J]. Journal of Inorganic Materials, 2023, 38(9): 1069-1075. |
[14] | DING Haoming, LI Mian, LI Youbing, CHEN Ke, XIAO Yukun, ZHOU Jie, TAO Quanzheng, Johanna Rosen, YIN Hang, BAI Yuelei, ZHANG Bikun, SUN Zhimei, WANG Junjie, ZHANG Yiming, HUANG Zhenying, ZHANG Peigen, SUN Zhengming, HAN Meikang, ZHAO Shuang, WANG Chenxu, HUANG Qing. Progress in Structural Tailoring and Properties of Ternary Layered Ceramics [J]. Journal of Inorganic Materials, 2023, 38(8): 845-884. |
[15] | MAO Aiqin, LU Wenyu, JIA Yanggang, WANG Ranran, SUN Jing. Flexible Piezoelectric Devices and Their Wearable Applications [J]. Journal of Inorganic Materials, 2023, 38(7): 717-730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||